タグ「線分」の検索結果

2ページ目:全1074問中11問~20問を表示)
京都大学 国立 京都大学 2016年 第5問
$xy$平面上の$6$個の点$(0,\ 0)$,$(0,\ 1)$,$(1,\ 0)$,$(1,\ 1)$,$(2,\ 0)$,$(2,\ 1)$が図のように長さ$1$の線分で結ばれている.動点$\mathrm{X}$は,これらの点の上を次の規則に従って$1$秒ごとに移動する.


\mon[規則:] 動点$\mathrm{X}$は,そのときに位置する点から出る長さ$1$の線分によって結ばれる図の点のいずれかに,等しい確率で移動する.

例えば,$\mathrm{X}$が$(2,\ 0)$にいるときは,$(1,\ 0)$,$(2,\ 1)$のいずれかに$\displaystyle \frac{1}{2}$の確率で移動する.また$\mathrm{X}$が$(1,\ 1)$にいるときは,$(0,\ 1)$,$(1,\ 0)$,$(2,\ 1)$のいずれかに$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$0$で動点$\mathrm{X}$が$\mathrm{O}=(0,\ 0)$から出発するとき,$n$秒後に$\mathrm{X}$の$x$座標が$0$である確率を求めよ.ただし$n$は$0$以上の整数とする.

(図は省略)
山形大学 国立 山形大学 2016年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=\sqrt{3}$,$\mathrm{BC}=\sqrt{5}$,$\mathrm{AC}=2$とする.辺$\mathrm{BC}$上に点$\mathrm{B}$と異なる点$\mathrm{P}$があり,$\mathrm{AP}=\sqrt{3}$とする.また,辺$\mathrm{AB}$の中点を$\mathrm{Q}$,線分$\mathrm{AP}$と線分$\mathrm{CQ}$との交点を$\mathrm{R}$とする.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$と$\triangle \mathrm{ABC}$の面積$S$を求めよ.
(2)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)$\triangle \mathrm{AQR}$の面積$T$を求めよ.
山形大学 国立 山形大学 2016年 第1問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=\sqrt{3}$,$\mathrm{BC}=\sqrt{5}$,$\mathrm{AC}=2$とする.辺$\mathrm{BC}$上に点$\mathrm{B}$と異なる点$\mathrm{P}$があり,$\mathrm{AP}=\sqrt{3}$とする.また,辺$\mathrm{AB}$の中点を$\mathrm{Q}$,線分$\mathrm{AP}$と線分$\mathrm{CQ}$との交点を$\mathrm{R}$とする.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$と$\triangle \mathrm{ABC}$の面積$S$を求めよ.
(2)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)$\triangle \mathrm{AQR}$の面積$T$を求めよ.
群馬大学 国立 群馬大学 2016年 第5問
$\triangle \mathrm{OAB}$において,$3$辺の長さを$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\mathrm{AB}=4$とする.$\mathrm{P}$は辺$\mathrm{AB}$を$2:3$に内分する点とし,$\mathrm{Q}$は辺$\mathrm{OB}$上の点で線分$\mathrm{OP}$と線分$\mathrm{AQ}$が垂直になるものとする.また,線分$\mathrm{OP}$と線分$\mathrm{AQ}$の交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\mathrm{OQ}:\mathrm{QB}$を求めよ.
(4)$\mathrm{OR}:\mathrm{RP}$を求めよ.
名古屋大学 国立 名古屋大学 2016年 第2問
$2$つの円$C:(x-1)^2+y^2=1$と$D:(x+2)^2+y^2=7^2$を考える.また原点を$\mathrm{O}(0,\ 0)$とする.このとき,次の問に答えよ.

(1)円$C$上に,$y$座標が正であるような点$\mathrm{P}$をとり,$x$軸の正の部分と線分$\mathrm{OP}$のなす角を$\theta$とする.このとき,点$\mathrm{P}$の座標と線分$\mathrm{OP}$の長さを$\theta$を用いて表せ.
(2)$(1)$でとった点$\mathrm{P}$を固定したまま,点$\mathrm{Q}$が円$D$上を動くとき,$\triangle \mathrm{OPQ}$の面積が最大になるときの$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が円$C$上を動き,点$\mathrm{Q}$が円$D$上を動くとき,$\triangle \mathrm{OPQ}$の面積の最大値を求めよ.

ただし$(2)$,$(3)$においては,$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$が同一直線上にあるときは,$\triangle \mathrm{OPQ}$の面積は$0$であるとする.
岡山大学 国立 岡山大学 2016年 第2問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球面$S$と$2$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$がある.$\mathrm{O}$と異なる点$\mathrm{P}(s,\ t,\ 0)$に対し,直線$\mathrm{AP}$と球面$S$の交点で$\mathrm{A}$と異なる点を$\mathrm{Q}$とする.さらに直線$\mathrm{BQ}$と$xy$平面の交点を$\mathrm{R}(u,\ v,\ 0)$とする.このとき以下の問いに答えよ.

(1)ふたつの線分$\mathrm{OP}$と$\mathrm{OR}$の長さの積を求めよ.
(2)$s,\ t$をそれぞれ$u,\ v$を用いて表せ.
(3)点$\mathrm{P}$が$xy$平面内の直線$ax+by=1 (a^2+b^2 \neq 0)$上を動くとき,対応する点$\mathrm{R}$は$xy$平面内の同一円周上にあることを証明せよ.
岡山大学 国立 岡山大学 2016年 第4問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球面$S$と$2$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$がある.$\mathrm{O}$と異なる点$\mathrm{P}(s,\ t,\ 0)$に対し,直線$\mathrm{AP}$と球面$S$の交点で$\mathrm{A}$と異なる点を$\mathrm{Q}$とする.さらに直線$\mathrm{BQ}$と$xy$平面の交点を$\mathrm{R}(u,\ v,\ 0)$とする.このとき以下の問いに答えよ.

(1)ふたつの線分$\mathrm{OP}$と$\mathrm{OR}$の長さの積を求めよ.
(2)$s$を$u,\ v$を用いて表せ.
(3)$\ell$は$xy$平面内の直線で,原点$\mathrm{O}$を通らないものとする.直線$\ell$上を点$\mathrm{P}$が動くとき,対応する点$\mathrm{R}$は$xy$平面内の同一円周上にあることを証明せよ.
九州工業大学 国立 九州工業大学 2016年 第1問
座標平面上の曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と点$\mathrm{P}(s,\ t) (s>0,\ t>0,\ st<1)$を考える.また,$u=st$とする.点$\mathrm{P}$を通る曲線$C$の$2$本の接線をそれぞれ$\ell_1,\ \ell_2$とし,これらの接線と曲線$C$との接点をそれぞれ$\displaystyle \mathrm{A} \left( a,\ \frac{1}{a} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{1}{b} \right)$とする.ただし,$a<b$とする.以下の問いに答えよ.

(1)$a,\ b$を$s,\ t$を用いて表せ.
(2)$2$点$\mathrm{E}(a,\ 0)$,$\mathrm{F}(b,\ 0)$を考える.台形$\mathrm{ABFE}$の面積を$u$を用いて表せ.
(3)$\triangle \mathrm{PAB}$の面積を$u$を用いて表せ.
(4)$(3)$で求めた$\triangle \mathrm{PAB}$の面積を$S(u)$とする.$S(u)$は区間$0<u<1$で減少することを示せ.
(5)点$\mathrm{P}$が$2$点$(3,\ 0)$,$(0,\ 1)$を結ぶ線分上の端点以外にあるものとする.このとき,$\triangle \mathrm{PAB}$の面積が最小となる点$\mathrm{P}$の座標を求めよ.また,そのときの面積を求めよ.
金沢大学 国立 金沢大学 2016年 第1問
座標空間内に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 3,\ 0)$,$\mathrm{B}(0,\ 6,\ 0)$をとり,さらに$1<a<3$を満たす定数$a$に対して点$\mathrm{P}(t,\ ta,\ ta)$をとる.ただし,$t$は$t>0$の範囲を動くものとする.次の問いに答えよ.

(1)点$\mathrm{P}$から$xy$平面に垂線$\mathrm{PH}$を下ろす.点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{H}$が線分$\mathrm{AB}$上にあるときの$t$の値を求め,そのときの点$\mathrm{H}$の座標を$a$を用いて表せ.



以下,点$\mathrm{H}$は線分$\mathrm{AB}$上にあるとする.


\mon[$(3)$] 点$\mathrm{M}$を線分$\mathrm{AB}$の中点とする.$\mathrm{AH}:\mathrm{HM}$の比の値$\displaystyle \frac{\mathrm{AH}}{\mathrm{HM}}$を求めよ.
\mon[$(4)$] 四面体$\mathrm{OPMH}$の体積が$2$となるような$a$の値を求めよ.
信州大学 国立 信州大学 2016年 第2問
曲線$C:y=x^2$と,$C$上の点$\mathrm{P}_1(-1,\ 1)$と$\mathrm{P}_2(3,\ 9)$を考える.線分$\mathrm{P}_1 \mathrm{P}_2$を$1:3$に内分する点を$\mathrm{H}$,$\mathrm{P}_1$における接線と$\mathrm{P}_2$における接線の交点を$\mathrm{Q}$,線分$\mathrm{HQ}$と曲線$C$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\mathrm{HQ}$の方程式を求めよ.
(4)点$\mathrm{R}$の座標を求めよ.
(5)線分$\mathrm{P}_2 \mathrm{H}$と線分$\mathrm{HR}$と曲線$C$で囲まれた部分の面積を求めよ.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。