タグ「範囲」の検索結果

5ページ目:全1424問中41問~50問を表示)
福島大学 国立 福島大学 2016年 第5問
二つの実数$\alpha,\ \beta$について,
\[ m(\alpha,\ \beta)=\left\{ \begin{array}{lcl}
\beta & & (\alpha \geqq \beta \text{のとき}) \\
\alpha & & (\alpha<\beta \text{のとき})
\end{array} \right. \]
と定め,また
\[ M(\alpha,\ \beta)=\alpha+\beta-m(\alpha,\ \beta) \]
とする.

$a,\ b$を実数として関数$f(x),\ g(x)$を次で定めるとき,以下の問いに答えなさい.
\[ f(x)=-(x-a)^2+b,\quad g(x)=M(0,\ x^2-1) \]


(1)関数$y=g(x)$のグラフの概形をかきなさい.
(2)全ての実数$x$について
\[ m(f(x),\ g(x))=f(x) \]
が成り立つような$(a,\ b)$の範囲を図示しなさい.
熊本大学 国立 熊本大学 2016年 第2問
$1$つのさいころを$3$回投げる.$1$回目に出る目の数,$2$回目に出る目の数,$3$回目に出る目の数をそれぞれ$X_1,\ X_2,\ X_3$とし,$5$つの数
\[ 2,\quad 5,\quad 2-X_1,\quad 5+X_2,\quad X_3 \]
からなるデータを考える.以下の問いに答えよ.

(1)データの範囲が$7$以下である確率を求めよ.
(2)$X_3$がデータの中央値に等しい確率を求めよ.
(3)$X_3$がデータの平均値に等しい確率を求めよ.
(4)データの中央値と平均値が一致するとき,$X_3$が中央値に等しい条件付き確率を求めよ.
鳥取大学 国立 鳥取大学 2016年 第4問
曲線$C:x^4-2xy+y^2=0$に関して,以下の問いに答えよ.

(1)$C$上の点$(x,\ y)$に対して,$y$を$x$の式で表し,$x$の値の取り得る範囲を求めよ.
(2)$C$上の点で,$x$座標が最大となる点と,$y$座標が最大となる点をそれぞれ求めよ.
(3)$C$で囲まれた図形の面積を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
東京農工大学 国立 東京農工大学 2016年 第3問
$a$を正の実数とし,$x$の関数$f(x)$を
\[ f(x)=e^{-ax} \tan^2 x \quad \left( -\frac{\pi}{3}<x<\frac{\pi}{3} \right) \]
で定める.ただし,$e$は自然対数の底とする.次の問いに答えよ.

(1)$f(x)$の導関数を$f^\prime(x)$とする.$\displaystyle f^\prime \left( \frac{\pi}{4} \right)=0$が成り立つとき,$a$の値を求めよ.
(2)$f^\prime(x)=0$かつ$\displaystyle -\frac{\pi}{3}<x<\frac{\pi}{3}$を満たす$x$がちょうど$3$個存在するように,定数$a$の値の範囲を定めよ.
(3)$a$の値が$(2)$で定めた範囲にあるとする.このとき,方程式$f^\prime(x)=0$の解を$\displaystyle x_1,\ x_2,\ x_3 \left( -\frac{\pi}{3}<x_1<x_2<x_3<\frac{\pi}{3} \right)$とし,
\[ y_1=f(x_1),\quad y_2=f(x_2),\quad y_3=f(x_3) \]
とおく.

(i) $y_1,\ y_2,\ y_3$を大きさの順に並べよ.
(ii) $\tan x_3$を$a$の式で表せ.
千葉大学 国立 千葉大学 2016年 第4問
$-\sqrt{2} \leqq x \leqq \sqrt{2}$の範囲で,点$\mathrm{P}$は放物線$y=-x^2+2$上を動き,点$\mathrm{Q}$は放物線$y=x^2-2$上を動く.ただし,$\mathrm{P}$と$\mathrm{Q}$は異なる点とする.

(1)直線$\mathrm{PQ}$が原点を通るとき,線分$\mathrm{PQ}$の長さの最大値と最小値を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
$-\sqrt{2} \leqq x \leqq \sqrt{2}$の範囲で,点$\mathrm{P}$は放物線$y=-x^2+2$上を動き,点$\mathrm{Q}$は放物線$y=x^2-2$上を動く.ただし,$\mathrm{P}$と$\mathrm{Q}$は異なる点とする.

(1)直線$\mathrm{PQ}$が原点を通るとき,線分$\mathrm{PQ}$の長さの最大値と最小値を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値を求めよ.
鳥取大学 国立 鳥取大学 2016年 第2問
$xy$平面上に$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(-2,\ 0)$と円$C:x^2+y^2-2y=0$,および直線$\ell:y=kx+2k$がある.ただし,$k$は実数とする.

(1)点$\mathrm{A}$と直線$\ell$の距離を$k$を用いて表せ.
(2)直線$\ell$と円$C$が異なる$2$点で交わるように,$k$の値の範囲を求めよ.
(3)直線$\ell$と円$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.線分$\mathrm{PQ}$について,$\mathrm{PQ}=2 \sqrt{k}$が成り立つとき,$k$の値を求めよ.
(4)$(3)$で求めた$k$に対する直線$\ell$と直線$\mathrm{AB}$のなす角を$\theta$とする.このとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0 \leqq \theta<\frac{\pi}{4}$とする.
鳥取大学 国立 鳥取大学 2016年 第2問
$xy$平面上に$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(-2,\ 0)$と円$C:x^2+y^2-2y=0$,および直線$\ell:y=kx+2k$がある.ただし,$k$は実数とする.

(1)点$\mathrm{A}$と直線$\ell$の距離を$k$を用いて表せ.
(2)直線$\ell$と円$C$が異なる$2$点で交わるように,$k$の値の範囲を求めよ.
(3)直線$\ell$と円$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.線分$\mathrm{PQ}$について,$\mathrm{PQ}=2 \sqrt{k}$が成り立つとき,$k$の値を求めよ.
(4)$(3)$で求めた$k$に対する直線$\ell$と直線$\mathrm{AB}$のなす角を$\theta$とする.このとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0 \leqq \theta<\frac{\pi}{4}$とする.
徳島大学 国立 徳島大学 2016年 第1問
座標平面上の曲線$\displaystyle \frac{x^2}{4}+y^2=1 (y \geqq 0)$を$C$とする.実数$t>1$に対して,点$(0,\ t)$を通り第$1$象限の点$(a,\ b)$で曲線$C$に接する直線を$\ell$とする.

(1)$x$軸,$y$軸と$\ell$で囲まれた部分の面積を$S_1(t)$とする.$t$が$t>1$の範囲を動くとき,$S_1(t)$の最小値を求めよ.
(2)曲線$C$と直線$y=b$で囲まれた部分の面積を$S_2(t)$とする.$t$が$t>1$の範囲を動くとき,導関数$S_2^\prime(t)$の最大値を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。