タグ「範囲」の検索結果

4ページ目:全1424問中31問~40問を表示)
埼玉大学 国立 埼玉大学 2016年 第3問
次の問いに答えよ.

(1)$\displaystyle f(x)=\frac{e^x}{x^2+3x+1}$とする.$x>0$の範囲で$f(x)$が最小になる$x$の値と,そのときの$f(x)$の値を求めよ.
(2)$a>0$とする.曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と$2$つの直線$\ell_1:y=2e^ax$,$\ell_2:y=(a^2+3a+1)x$を考える.$C$と$\ell_1$と$\ell_2$で囲まれる部分を$D$とする.

\mon[(ア)] $C$と$\ell_1$の交点,および,$C$と$\ell_2$の交点の座標を求めよ.
\mon[(イ)] $(1)$を用いて$2e^a>a^2+3a+1$であることを示せ.ただし,$e=2.7182 \cdots$であることは用いてよい.
\mon[(ウ)] $D$の面積を$a$を用いて表せ.
\mon[(エ)] $D$の面積を最小にする$a$の値と,そのときの$D$の面積を求めよ.
筑波大学 国立 筑波大学 2016年 第1問
$k$を実数とする.$xy$平面の曲線$C_1:y=x^2$と$C_2:y=-x^2+2kx+1-k^2$が異なる共有点$\mathrm{P}$,$\mathrm{Q}$を持つとする.ただし点$\mathrm{P}$,$\mathrm{Q}$の$x$座標は正であるとする.また,原点を$\mathrm{O}$とする.

(1)$k$のとりうる値の範囲を求めよ.
(2)$k$が$(1)$の範囲を動くとき,$\triangle \mathrm{OPQ}$の重心$\mathrm{G}$の軌跡を求めよ.
(3)$\triangle \mathrm{OPQ}$の面積を$S$とするとき,$S^2$を$k$を用いて表せ.
(4)$k$が$(1)$の範囲を動くとする.$\triangle \mathrm{OPQ}$の面積が最大となるような$k$の値と,そのときの重心$\mathrm{G}$の座標を求めよ.
筑波大学 国立 筑波大学 2016年 第2問
$xy$平面の直線$y=(\tan 2 \theta)x$を$\ell$とする.ただし$\displaystyle 0<\theta<\frac{\pi}{4}$とする.図で示すように,円$C_1$,$C_2$を以下の$(ⅰ)$~$\tokeishi$で定める.

(i) 円$C_1$は直線$\ell$および$x$軸の正の部分と接する.
(ii) 円$C_1$の中心は第$1$象限にあり,原点$\mathrm{O}$から中心までの距離$d_1$は$\sin 2\theta$である.
(iii) 円$C_2$は直線$\ell$,$x$軸の正の部分,および円$C_1$と接する.
\mon[$\tokeishi$] 円$C_2$の中心は第$1$象限にあり,原点$\mathrm{O}$から中心までの距離$d_2$は$d_1>d_2$を満たす.

円$C_1$と円$C_2$の共通接線のうち,$x$軸,直線$\ell$と異なる直線を$m$とし,直線$m$と直線$\ell$,$x$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.

(1)円$C_1,\ C_2$の半径を$\sin \theta,\ \cos \theta$を用いて表せ.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{4}$の範囲を動くとき,線分$\mathrm{PQ}$の長さの最大値を求めよ.
(3)$(2)$の最大値を与える$\theta$について直線$m$の方程式を求めよ.
(図は省略)
群馬大学 国立 群馬大学 2016年 第1問
$a$は実数とする.関数$f(x)=2x^2-4 |x|+a$と$g(x)=|x|-a$について,次の問いに答えよ.

(1)$2$つの関数のグラフの共有点の個数とそのときの$a$の値の範囲を求めよ.
(2)$2$つの関数のグラフが共有点をもつとき,それらの$x$座標の絶対値がすべて$1$以上かつ$3$以下になるような$a$の値の範囲を求めよ.
群馬大学 国立 群馬大学 2016年 第1問
$a>0$とする.関数$f(x)=2x^2-4 |x|+a$と$g(x)=|x|-a$について,次の問いに答えよ.

(1)$a=1$のときの$2$つの関数のグラフをかけ.
(2)$2$つの関数のグラフが$2$つの共有点をもつときの$a$の値を求めよ.
(3)$2$つの関数のグラフが共有点をもつとき,それらの$x$座標の絶対値がすべて$1$以上かつ$3$以下になるような$a$の値の範囲を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第5問
点$\mathrm{P}$は$x$座標が正または$0$の範囲で放物線$\displaystyle y=1-\frac{x^2}{2}$上を動くとする.点$\mathrm{P}$における放物線$\displaystyle y=1-\frac{x^2}{2}$の法線を$m$として,法線$m$と$x$軸とのなす角を$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$とする.法線$m$上の点$\mathrm{Q}$は$\mathrm{PQ}=1$を満たし,不等式$\displaystyle y>1-\frac{x^2}{2}$の表す領域にあるとする.点$\mathrm{Q}$の軌跡を$C$とし,次の問いに答えよ.

(1)点$\mathrm{P},\ \mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)曲線$C$と$x$軸との交点の座標を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{\sin \theta} \, d\theta$を$t=\cos \theta$と置換することにより求めよ.

(4)不定積分$\displaystyle \int \frac{1}{\sin^2 \theta} \, d\theta$,$\displaystyle \int \frac{1}{\sin^4 \theta} \, d\theta$を$\displaystyle t=\frac{\cos \theta}{\sin \theta}$と置換することにより求めよ.

(5)曲線$C$と$x$軸および$y$軸により囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2016年 第3問
平面上の三角形$\mathrm{ABC}$は,$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\angle \mathrm{BAC}={60}^\circ$を満たしているとする.また,平面上の動点$\mathrm{P}$に対し実数$f(\mathrm{P})$を
\[ f(\mathrm{P})=\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{CP}}+\overrightarrow{\mathrm{CP}} \cdot \overrightarrow{\mathrm{AP}} \]
で定める.このとき,次の問に答えよ.

(1)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とするとき,$f(\mathrm{G})$の値を求めよ.
(2)$\displaystyle f(\mathrm{P})=\frac{8}{3}$となる点$\mathrm{P}$の全体は円になることを示せ.
(3)点$\mathrm{P}$が平面全体を動くとき,$f(\mathrm{P})$のとりうる値の範囲を求めよ.
信州大学 国立 信州大学 2016年 第5問
$\mathrm{P}_0$,$\mathrm{Q}_0$を複素数平面上の異なる点とする.自然数$k$に対して,平面上の点$\mathrm{P}_k$,$\mathrm{Q}_k$を以下の条件$(ⅰ)$,$(ⅱ)$を満たすものとして定める.

(i) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k-1}$を$\mathrm{P}_{k-1}$を中心として角$\theta$だけ回転させた線分が$\mathrm{P}_{k-1} \mathrm{Q}_{k}$となる.
(ii) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k}$を$\mathrm{Q}_{k}$を中心として角$\theta^\prime$だけ回転させた線分が$\mathrm{Q}_{k} \mathrm{P}_{k}$となる.

以下の問いに答えよ.

(1)$\mathrm{Q}_{k+2}=\mathrm{Q}_k$となるための,$\theta$と$\theta^\prime$に関する条件を求めよ.
(2)$0 \leqq \theta<2\pi$,$\theta=-\theta^\prime$,$|\mathrm{Q|_0 \mathrm{P}_0}=1$とする.$\mathrm{Q}_0$を中心とし,半径が$r$の円を$C$とする.$\mathrm{P}_{n-1}$は$C$の内部,$\mathrm{Q}_n$は$C$の外部にあるという.このとき,$r^2$が取り得る値の範囲を$n$と$\theta$を用いて表せ.
岩手大学 国立 岩手大学 2016年 第4問
曲線$y=-x^3+3x^2+x-3$を$C$とし,曲線$C$上の点$(3,\ 0)$における接線を$\ell$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$p$を実数とし,点$(p,\ q_1)$は接線$\ell$上にあり,点$(p,\ q_2)$は曲線$C$上にあるとする.$p<3$の範囲を$p$が動くとき,$q_1-q_2$の最大値を求めよ.
(3)接線$\ell$と曲線$C$で囲まれた図形は,$y$軸によって$2$つの部分に分けられるが,それらの面積のうち小さい方を$S$,大きい方を$T$とするとき,$\displaystyle \frac{T}{S}$の値を求めよ.
福島大学 国立 福島大学 2016年 第1問
次の問いに答えなさい.

(1)次の方程式を解きなさい.
\[ \sqrt{5-2x}-x+2=0 \]
(2)次の不等式を満たす$t$の範囲を$\log_{10}2$を用いて求めなさい.
\[ \left( \frac{1}{2} \right)^{\frac{t}{30}}<\frac{1}{10} \]
(3)次の関数を微分しなさい.
\[ y=x^2 \log_e x \]
(4)次の定積分の値を求めなさい.
\[ \int_0^1 xe^{-\frac{1}{2}x^2} \, dx \]
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。