タグ「範囲」の検索結果

14ページ目:全1424問中131問~140問を表示)
北里大学 私立 北里大学 2016年 第2問
$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CD}+\mathrm{DA}=12$である四角形$\mathrm{ABCD}$が円に内接している.$\mathrm{CD}=x$とおく.次の問いに答えよ.

(1)$\mathrm{AC}=3 \sqrt{6}$のとき,$x$の値を求めよ.
(2)$x$のとり得る値の範囲を求めよ.
(3)四角形$\mathrm{ABCD}$の面積の最大値を求めよ.
(4)四角形$\mathrm{ABCD}$の$4$辺すべてが接する円が存在するとき,$x$の値を求めよ.
神戸薬科大学 私立 神戸薬科大学 2016年 第1問
次の問いに答えよ.

(1)$(x+2)(x+3)(x+4)(x+5)+1$を実数の範囲で因数分解すると$[ア]$である.
(2)$x^{2016}$を$x^2-1$で割った余りを求めると$[イ]$である.
(3)$\cos {28}^\circ+\cos {75}^\circ+\cos {150}^\circ+\cos {208}^\circ+\cos {255}^\circ$の値を求めると$[ウ]$である.
(4)$12707$と$12319$の最大公約数を求めると$[エ]$である.
(5)$2^x=5^y=10$のとき,$\displaystyle \frac{1}{x}+\frac{1}{y}$の値を求めると$[オ]$である.
(6)点$\mathrm{A}(-2,\ 0)$と点$\mathrm{B}(6,\ 0)$からの距離の比が$1:3$となる点$\mathrm{P}$の軌跡の方程式を求めると$[カ]$である.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a$を実数とする.$3$辺の長さがそれぞれ$a-1,\ a,\ a+1$となる三角形が存在するとき,$a$の値の範囲は$[ア]$である.この三角形が鈍角三角形となる$a$の値の範囲は$[イ]$である.$a=[ウ]$のとき,$1$つの内角が$\displaystyle \frac{2\pi}{3}$となる三角形である.このとき三角形の外接円の半径は$[エ]$であり,内接円の半径は$[オ]$である.
(2)$k$を実数とし,$f(x)=x^4+kx^2+1$とおく.曲線$C_1:y=f(x)$の点$\mathrm{P}(1,\ f(1))$における接線$\ell$の方程式は$y=[カ]$である.直線$\ell$は,$k$の値によらず定点$([キ])$を通る.$k$の値の範囲が$[ク]$のとき,曲線$C_1$と直線$\ell$との共有点の個数は$3$となる.このとき,この$3$つの共有点を通る$3$次関数で定義される曲線のうち,$x^3$の係数が$1$である曲線$C_2$は$y=[ケ]$で表される.$k=-7$のとき,$\ell$と$C_2$で囲まれた$2$つの部分の面積の差の絶対値は$[コ]$である.
大阪薬科大学 私立 大阪薬科大学 2016年 第1問
次の問いに答えなさい.

(1)$4$個のさいころを同時に投げるとき,出る目の最大値が$5$以上である確率を$p$,出る目の最大値が$4$以下である確率を$q$とする.このとき,$p$と$q$の間で成り立つ大小関係を次のア~ウのうちからひとつ選べ.ただし,どのさいころも$1$から$6$までの目が同様に確からしく出るとする.

ア:「$p<q$」 \qquad イ:「$p=q$」 \qquad ウ:「$p>q$」

(2)第$2$項が$3$,第$22$項が$33$である等差数列の第$28$項の値を求めよ.
(3)$n$を自然数とする.$(5x+1)^n$の展開式における$x^2$の項の係数が$700$である$n$の値を求めよ.
(4)$\theta$は$0 \leqq \theta<2\pi$を満たす実数とする.$x$の関数
\[ f(x)=2x^3-3(2+\sin \theta)x^2+(1+\sin \theta)(2+\sin \theta)^2 \]
の極小値を$m(\theta)$とし,$\theta$が$0 \leqq \theta<2\pi$の範囲を動くときの$m(\theta)$のとり得る最大の値を$M$とする.このとき,$M$の値,および$m(\theta)=M$を満たす$\theta$の値を求めよ.
北里大学 私立 北里大学 2016年 第1問
次の$[ ]$にあてはまる答えを記せ.

(1)$a$と$\theta$を実数とし,$2$次方程式$x^2-\sqrt{7}ax+3a^3=0$の$2$つの解を$\sin \theta$,$\cos \theta$とする.このとき,$a$の値は$[ア]$または$[イ]$である.ただし,$[ア]<[イ]$とする.さらに,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$であれば,$\sin \theta=[ウ]$である.
(2)$x,\ y,\ z$を$0$以上の整数とする.このとき

(i) $x+y+z=9$を満たす$x,\ y,\ z$の組の総数は$[エ]$である.
(ii) $x+y+z \leqq 9$を満たす$x,\ y,\ z$の組の総数は$[オ]$である.
(iii) $x+y+z \leqq 9$を満たす$x,\ y,\ z$の組のうち,$x,\ y,\ z$がすべて相異なるものの総数は$[カ]$である.

(3)$a$を$0 \leqq a \leqq 1$を満たす定数とする.直線$y=1-x$と$x$軸,$y$軸で囲まれた図形を直線$y=a$の周りに$1$回転してできる回転体の体積を$V(a)$とする.このとき$V(a)$は,$\displaystyle 0 \leqq a<\frac{1}{2}$ならば$[キ]$,$\displaystyle \frac{1}{2} \leqq a \leqq 1$ならば$[ク]$と$a$を用いて表される.また,$V(a)$のとり得る値の範囲は$[ケ]$である.
(4)$1$辺の長さが$2$の正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.
このとき,$\cos \angle \mathrm{MCN}$の値は$[コ]$である.また,頂点$\mathrm{O}$から平面$\mathrm{MNC}$に下ろした垂線と平面$\mathrm{MNC}$の交点を$\mathrm{H}$とするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと,$\overrightarrow{\mathrm{OH}}=[サ] \overrightarrow{a}+[シ] \overrightarrow{b}-[ス] \overrightarrow{c}$である.さらに,直線$\mathrm{OH}$と平面$\mathrm{ABC}$の交点を$\mathrm{F}$とするとき,$\displaystyle \frac{\mathrm{OH}}{\mathrm{HF}}$の値は$[セ]$である.
神戸薬科大学 私立 神戸薬科大学 2016年 第2問
$2$次関数$y=4x^2-16x-9$において,最小値は$x=[キ]$のとき,$y=[ク]$である.また,$y \leqq 0$となる$x$の範囲を求めると$[ケ]$である.

この$2$次関数のグラフを$x$軸方向に$\displaystyle \frac{3}{2}$,$y$軸方向に$a$だけ平行移動すると点$(1,\ 7)$を通った.このとき,$a=[コ]$である.
神戸薬科大学 私立 神戸薬科大学 2016年 第4問
方程式$x^2-2ax+a+2=0$の解の$1$つが正,もう$1$つの解が負のとき,定数$a$の値の範囲を求めると$[ソ]$である.

この方程式の解のすべて(重解のときも含む)が$-3<x<3$の範囲内にあるとき,定数$a$の値の範囲を求めると$[タ]$である.
明治大学 私立 明治大学 2016年 第5問
$m$は定数とする.次の連立不等式について下の各問に答えよ.
\[ \left\{ \begin{array}{lr}
x^2-3mx+2m^2<0 \phantom{\displaystyle\frac{2}{2}} & \cdots\cdots ① \\
2x^2-(m-4)x-2m<0 \phantom{\displaystyle\frac{2}{2}} & \cdots\cdots ②
\end{array} \right. \]
において,

(1)$①$の左辺の式を因数分解せよ.
(2)$②$の左辺の式を因数分解せよ.
(3)$①$の不等式を満たす$x$の範囲を求めよ.
(4)$②$の不等式を満たす$x$の範囲を求めよ.
(5)この連立不等式の整数解がただ$1$つとなるときの整数解と,そのときの$m$の範囲を求めよ.
明治大学 私立 明治大学 2016年 第1問
次の各問の$[ ]$にあてはまる数を記入せよ.

(1)$3$次方程式$x^3-6x^2+9x+2-a=0$が異なる$2$つの実数解をもつときの$a$の値は,$[ア]$または$[イ]$である.ただし,$[ア]<[イ]$とする.
(2)(指定範囲外からの出題だったため,全員正解とした.)
(3)$\triangle \mathrm{ABC}$において,$\displaystyle \cos A=-\frac{1}{2},\ \cos B=\frac{11}{14},\ \cos C=\frac{13}{14},\ \mathrm{AB}=3$であるとき,$\mathrm{BC}=[ア]$である.
(4)方程式$a+b+c+5d=17$を満たす$a,\ b,\ c,\ d$の$0$以上の整数解の組の総数は$[ア][イ][ウ]$個である.
(5)$\displaystyle \sum_{k=1}^{20} \frac{1}{k(k+1)(k+2)}$の値は$\displaystyle \frac{[ア][イ][ウ]}{[エ][オ][カ]}$である.
明治大学 私立 明治大学 2016年 第1問
次の空欄$[オ]$に当てはまるものを解答群の中から選べ.それ以外の空欄には,当てはまる$0$から$9$までの数字を入れよ.

(1)$x \neq 7$とする.このとき,不等式
\[ -x^2-x+20>\frac{140}{7-x} \]
を満たす$x$の値の範囲は,
\[ -[ア]<x<[イ],\quad [ウ]<x<[エ] \]
である.
(2)$q$を正の実数とするとき,
\[ \lim_{s \to 1} \frac{q^s-q}{s-1}=[オ] \]
である.
$a,\ b,\ c$を実数とする.$x>0$に対して,関数$f(x)$を
\[ f(x)=\lim_{n \to \infty} \left\{ n(x^{1+\frac{1}{n}}-x)-\frac{ax-2b+x^{n+1}-cx^n}{4+x^n} \right\} \]
と定義する.$f(x)$が$x=1$で連続であるとき,
\[ a-[カ]b+[キ]c=[ク] \]
となる.
オの解答群(ただし,$\log$は自然対数,$e$はその底とする)

\begin{tabular}{llllllllll}
$\nagamarurei 0$ & & $\nagamaruichi 1$ & & $\nagamaruni q$ & & $\nagamarusan q^{-1}$ & & $\nagamarushi e^q$ \\
$\nagamarugo e^{-q}$ & & $\nagamaruroku \log q$ & & $\nagamarushichi -\log q$ & & $\nagamaruhachi q \log q$ & & $\nagamarukyu -q \log q$
\end{tabular}
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。