タグ「等式」の検索結果

2ページ目:全278問中11問~20問を表示)
秋田大学 国立 秋田大学 2016年 第1問
$i$を虚数単位とする.複素数$z$が等式$|iz+3|=|2z-6|$を満たすとき,次の問いに答えよ.

(1)この等式を満たす点$z$全体は,どのような図形を表すか答えよ.
(2)$z-\overline{z}=0$を満たす$z$を求めよ.
(3)$|z+i|$の最大値を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2016年 第2問
平面内にベクトル$\overrightarrow{a}$,$\overrightarrow{b}$がある.下の問いに答えなさい.

(1)次の等式を証明しなさい.
\[ |\overrightarrow{a|+\overrightarrow{b}}^2-|\overrightarrow{a|-\overrightarrow{b}}^2=4 \overrightarrow{a} \cdot \overrightarrow{b} \]
(2)$m,\ n$を実数とするとき,次の等式を証明しなさい.
\[ |m \overrightarrow{a|+n \overrightarrow{b}}^2+mn |\overrightarrow{a|-\overrightarrow{b}}^2=(m+n)(m |\overrightarrow{a|}^2+n |\overrightarrow{b|}^2) \]
(3)$\triangle \mathrm{OAB}$において,$\mathrm{OA}=2$,$\mathrm{OB}=4$,$\mathrm{AB}=3$とする.線分$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{C}$とするとき,線分$\mathrm{OC}$の長さを求めなさい.
長岡技術科学大学 国立 長岡技術科学大学 2016年 第3問
関数$f(x),\ g(x)$は
\[ \left\{ \begin{array}{l}
f(3x)+g(2x)=\sin 6x \quad \cdots\cdots (*) \\
f^\prime(3x)+g^\prime(2x)=\sin 6x \phantom{\frac{[ ]}{[ ]}} \\
f(0)=3
\end{array} \right. \]
を満たしている.下の問いに答えなさい.

(1)等式$(*)$の両辺を$x$で微分しなさい.
(2)$f^\prime(3x)$を求めなさい.
(3)$f(x),\ g(x)$を求めなさい.
山口大学 国立 山口大学 2016年 第1問
$n$を自然数とする.このとき,次の問いに答えなさい.

(1)$\alpha,\ \beta$を実数とし,
\[ f(x)=\frac{\alpha}{x-\alpha}-\frac{\beta}{x-\beta} \]
とする.$f(x)$の第$n$次導関数$f^{(n)}(x)$について,次の等式が成り立つことを,数学的帰納法によって証明しなさい.
\[ f^{(n)}(x)={(-1)}^n n! \left\{ \frac{\alpha}{{(x-\alpha)}^{n+1}}-\frac{\beta}{{(x-\beta)}^{n+1}} \right\} \]
(2)$b,\ c$を$b^2>4c$を満たす実数とし,
\[ h(x)=\frac{x}{x^2-bx+c} \]
とする.また,$h(x)$の第$n$次導関数$h^{(n)}(x)$に対し,$\displaystyle a_n=\frac{c^nh^{(n)}(0)}{n!}$とおく.

(i) $2$次方程式$x^2-bx+c=0$の解を$\alpha,\ \beta$とする.$a_n$を$\alpha,\ \beta,\ n$を用いて表しなさい.
(ii) $a_{n+2}-ba_{n+1}+ca_n=0$が成り立つことを示しなさい.
山口大学 国立 山口大学 2016年 第4問
点$\mathrm{O}(0,\ 0,\ 0)$と点$\mathrm{A}(1,\ 0,\ 0)$に対して,点$\mathrm{B}(b_1,\ b_2,\ 0)$と点$\mathrm{C}(c_1,\ c_2,\ c_3)$は
\[ \angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COA}=\frac{3\pi}{5},\quad |\overrightarrow{\mathrm{OB|}}=|\overrightarrow{\mathrm{OC|}}=1 \]
を満たしているとする.$b_2>0$,$c_3>0$,また,$\displaystyle p=2 \cos \frac{\pi}{5}$とするとき,以下の問いに答えなさい.ただし,次の等式$①$を証明なしに用いてもよい.
\[ 4 \cos \frac{2\pi}{5} \cos \frac{\pi}{5}=1 \cdots\cdots ① \]

(1)等式$p^2=p+1$が成り立つことを示しなさい.
(2)$\displaystyle b_1=\frac{1-p}{2}$であることを示しなさい.
(3)点$\mathrm{E}(0,\ 0,\ 1)$に対して,$\overrightarrow{\mathrm{OC}}$を実数$k,\ l,\ m$を用いて
\[ \overrightarrow{\mathrm{OC}}=k \overrightarrow{\mathrm{OA}}+l \overrightarrow{\mathrm{OB}}+m \overrightarrow{\mathrm{OE}} \]
と表すとき,$\displaystyle m^2=\frac{2+p}{5}$であることを示しなさい.
(4)四面体$\mathrm{OABC}$の体積を$V$とする.$\displaystyle V=\frac{p}{12}$であることを示しなさい.
山形大学 国立 山形大学 2016年 第2問
すべての実数$x$に対して微分可能な関数$f(x)$が等式
\[ e^{-x}f(x)+\int_0^x e^{-t} f(t) \, dt=1+e^{-2x}(3 \sin x-\cos x) \]
を満たすとき,次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)$f(0)$を求めよ.
(2)導関数$f^\prime(x)$を求めよ.
(3)$e^{-x} \sin x$の導関数を求めよ.さらに,$f(x)$を求めよ.
茨城大学 国立 茨城大学 2016年 第3問
複素数平面上で,複素数$z$に対応する点$\mathrm{P}$を$\mathrm{P}(z)$と表す.$3$点$\mathrm{O}(0)$,$\mathrm{A}(1)$,$\mathrm{B}(\beta)$を頂点とする三角形$\mathrm{OAB}$がある.ただし,複素数$\beta$の偏角$\theta$は,$0<\theta<\pi$を満たすとする.また,$s$と$t$は$4s-t^2>0$を満たす実数とする.等式
\[ \beta^2-t \beta+s=0 \]
が成り立つとき,以下の各問に答えよ.

(1)複素数$\beta$の実部と虚部をそれぞれ$s$と$t$を用いて表せ.
(2)複素数$\beta$の絶対値と,偏角$\theta$に対する$\sin \theta$を,それぞれ$s$と$t$を用いて表せ.
(3)三角形$\mathrm{OAB}$が二等辺三角形になるために$s$と$t$が満たすべき条件を求めよ.
(4)三角形$\mathrm{OAB}$が$\mathrm{OA}=\mathrm{AB}$である二等辺三角形とする.このとき,三角形$\mathrm{OAB}$の面積が$\displaystyle \frac{1}{4}$となる$s$と$t$の値の組をすべて求めよ.
山口東京理科大学 私立 山口東京理科大学 2016年 第1問
次の数値の整数部分と小数部分をそれぞれ$x,\ y$とする.
\[ \frac{1}{5-\sqrt{23}} \]
このとき次の等式が成り立つ.

$x=[ア],$

$y=\frac{\sqrt{[イ][ウ]}-[エ]}{[オ]},$

$4x^2+3xy+4y^2=[カ][キ]$
同志社大学 私立 同志社大学 2016年 第2問
次の問いに答えよ.

(1)関数$f(u)=\log (\sqrt{u}-1)-\log (\sqrt{u}+1)$の導関数$f^\prime(u)$を求めよ.
(2)関数$F(x)=\log (\sqrt{e^{2x}+1}-1)-\log (\sqrt{e^{2x}+1}+1)$の導関数$F^\prime(x)$を求めよ.
(3)等式$\displaystyle \sqrt{e^{2x}+1}=\frac{e^{2x}}{\sqrt{e^{2x}+1}}+\frac{1}{\sqrt{e^{2x}+1}}$を用いて,不定積分$\displaystyle \int \sqrt{e^{2x}+1} \, dx$を求めよ.
(4)曲線$\displaystyle y=e^x \left( \frac{1}{2} \log 8 \leqq x \leqq \frac{1}{2} \log 24 \right)$の長さを求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$f(x)$は$2$次関数であり,$f(0)=f(1)=0$を満たすとする.

(1)$\displaystyle a=\frac{1}{2}f^{\prime\prime}(0)$とする.このとき,$f(x)$は$a$を用いて$f(x)=[キ]$と表される.
(2)定積分
\[ \int_0^1 \{(f^\prime(x)-x)^2-f(x)\} \, dx \]
の値が最も小さくなるのは$f(x)=[ク]$のときである.また,そのときの定積分の値は$[ケ]$である.
以下では,$f(x)=[ク]$,$m=[ケ]$とする.
(3)関数$h(x)$は$h(0)=h(1)=0$を満たし,その導関数$h^\prime(x)$は連続であるとする.さらに,$I$と$J$を


$\displaystyle I=\int_0^1 \{(f^\prime(x)+h^\prime(x)-x)^2-(f(x)+h(x))\} \, dx$

$\displaystyle J=\int_0^1 \{(f^\prime(x)-x)^2-f(x)\} \, dx+\int_0^1 (h^\prime(x))^2 \, dx$


で定める.このとき,等式
\[ I=J \]
を証明しなさい.
(4)関数$g(x)$は$g(0)=g(1)=0$を満たし,その導関数$g^\prime(x)$は連続であるとする.このとき,不等式
\[ \int_0^1 \{(g^\prime(x)-x)^2-g(x)\} \, dx \geqq m \]
を証明しなさい.
スポンサーリンク

「等式」とは・・・

 まだこのタグの説明は執筆されていません。