タグ「直線」の検索結果

3ページ目:全2462問中21問~30問を表示)
埼玉大学 国立 埼玉大学 2016年 第3問
次の問いに答えよ.

(1)$\displaystyle f(x)=\frac{e^x}{x^2+3x+1}$とする.$x>0$の範囲で$f(x)$が最小になる$x$の値と,そのときの$f(x)$の値を求めよ.
(2)$a>0$とする.曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と$2$つの直線$\ell_1:y=2e^ax$,$\ell_2:y=(a^2+3a+1)x$を考える.$C$と$\ell_1$と$\ell_2$で囲まれる部分を$D$とする.

\mon[(ア)] $C$と$\ell_1$の交点,および,$C$と$\ell_2$の交点の座標を求めよ.
\mon[(イ)] $(1)$を用いて$2e^a>a^2+3a+1$であることを示せ.ただし,$e=2.7182 \cdots$であることは用いてよい.
\mon[(ウ)] $D$の面積を$a$を用いて表せ.
\mon[(エ)] $D$の面積を最小にする$a$の値と,そのときの$D$の面積を求めよ.
三重大学 国立 三重大学 2016年 第4問
$a$を正の定数とする.曲線$y=x^3-ax$を$C$とし,直線$y=b$を$\ell$とする.$C$と$\ell$がちょうど$2$点を共有しているとき,以下の問いに答えよ.

(1)$b$を$a$で表せ.
(2)$a=3$で$b$が正のとき,$C$と$\ell$で囲まれる部分の面積を求めよ.
三重大学 国立 三重大学 2016年 第5問
$a$を正の実数とし,曲線$y=x^3$を$C_1$,曲線$\displaystyle y=\frac{9}{8}ax^2$を$C_2$とする.また,$C_1$と$C_2$の共通接線で$C_1$と$2$点を共有するものを$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)$C_1$と$\ell$が囲む図形の面積$S$を求めよ.
(3)$C_2$と$\ell$の接点の$x$座標$p$を求めよ.さらに$\displaystyle I=\int_0^p \left( \frac{9}{8}ax^2-x^3 \right) \, dx$とするとき,比$S:I$を最も簡単な整数比で表せ.
岐阜大学 国立 岐阜大学 2016年 第5問
$xy$平面上に,直線$\ell:y=-x-2$と点$\mathrm{A}(1,\ 1)$がある.点$\mathrm{A}$からの距離と直線$\ell$からの距離が等しい点の軌跡を曲線$C$とする.以下の問に答えよ.

(1)曲線$C$の方程式を求めよ.
(2)曲線$C$と$x$軸の共有点の座標を求めよ.
(3)曲線$C$と$x$軸で囲まれた部分の面積を求めよ.
東京工業大学 国立 東京工業大学 2016年 第3問
水平な平面$\alpha$の上に半径$r_1$の球$S_1$と半径$r_2$の球$S_2$が乗っており,$S_1$と$S_2$は外接している.

(1)$S_1,\ S_2$が$\alpha$と接する点をそれぞれ$\mathrm{P}_1$,$\mathrm{P}_2$とする.線分$\mathrm{P}_1 \mathrm{P}_2$の長さを求めよ.
(2)$\alpha$の上に乗っており,$S_1$と$S_2$の両方に外接している球すべてを考える.それらの球と$\alpha$の接点は,$1$つの円の上または$1$つの直線の上にあることを示せ.
室蘭工業大学 国立 室蘭工業大学 2016年 第1問
$a,\ b,\ c$を定数とし,$a \neq 0$とする.関数$f(x)$を
\[ f(x)=ax^2+bx+c \]
と定める.放物線$y=f(x)$の頂点の$x$座標を$x=1$とする.また,放物線$y=f(x)$と直線$y=x$の交点の$x$座標を$x=2$と$x=-3$とする.

(1)$a,\ b,\ c$の値を求めよ.
(2)放物線$y=f(x)$と関数$y=|x|$のグラフの交点をすべて求めよ.
(3)放物線$y=f(x)$と関数$y=|x|$のグラフで囲まれた図形の面積$S$を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第2問
関数$y=f(x)$のグラフが媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=\sin \theta-\theta \cos \theta \phantom{\frac{1}{[ ]}} \\
y=\cos \theta+\theta \sin \theta \phantom{\frac{1}{1}}
\end{array} \right. \quad (0 \leqq \theta \leqq \pi) \]
と表されている.

(1)関数$y=f(x)$の極値を求めよ.

(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \theta \sin 2\theta \, d\theta$および$\displaystyle \int_0^{\frac{\pi}{2}} \theta^2 \cos 2\theta \, d\theta$を計算せよ.

(3)関数$y=f(x)$のグラフと$x$軸,および$2$直線$x=0$と$x=1$で囲まれた図形の面積$S$を求めよ.
東北大学 国立 東北大学 2016年 第5問
空間内に,直線$\ell$で交わる$2$平面$\alpha,\ \beta$と交線$\ell$上の$1$点$\mathrm{O}$がある.さらに,平面$\alpha$上の直線$m$と平面$\beta$上の直線$n$を,どちらも点$\mathrm{O}$を通り$\ell$に垂直にとる.$m,\ n$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$があり,
\[ \mathrm{OP}=\sqrt{3},\quad \mathrm{OQ}=2,\quad \mathrm{PQ}=1 \]
であるとする.線分$\mathrm{PQ}$上の動点$\mathrm{T}$について,$\mathrm{PT}=t$とおく.点$\mathrm{T}$を中心とした半径$\sqrt{2}$の球$S$を考える.このとき,以下の問いに答えよ.

(1)$S$の平面$\alpha$による切り口の面積を$t$を用いて表せ.
(2)$S$の平面$\alpha$による切り口の面積と$S$の平面$\beta$による切り口の面積の和を$f(t)$とおく.$\mathrm{T}$が線分$\mathrm{PQ}$上を動くとき,$f(t)$の最大値と,そのときの$t$の値を求めよ.
岐阜大学 国立 岐阜大学 2016年 第5問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$の中点を$\mathrm{E}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.以下の問に答えよ.

(1)$\overrightarrow{\mathrm{CE}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)直線$\mathrm{CE}$と辺$\mathrm{AB}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{CF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)辺$\mathrm{AB}$を$7:1$に外分する点を$\mathrm{G}$とする.$\overrightarrow{\mathrm{EG}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(4)内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{EG}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(5)$\triangle \mathrm{OAB}$を$\mathrm{OA}=\mathrm{OB}$となる直角二等辺三角形とするとき,$\angle \mathrm{CEG}$の大きさを求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第1問
平面上で,半径$r_1$の円$C_1$と半径$r_2$の円$C_2$が,異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとする.線分$\mathrm{PQ}$の垂直二等分線を$\ell$として,円$C_1$と$\ell$の交点のうち円$C_2$の内部にある点を$\mathrm{R}$,円$C_2$と$\ell$の交点のうち円$C_1$の外部にある点を$\mathrm{S}$とする.

(1)$\displaystyle \angle \mathrm{PRQ}=\frac{\pi}{2},\ \angle \mathrm{PSQ}=\frac{\pi}{6}$のとき,$\displaystyle \frac{r_2}{r_1}$を求めよ.

(2)$\displaystyle \angle \mathrm{PRQ}=\frac{\pi}{3},\ \angle \mathrm{PSQ}=\frac{\pi}{4}$のとき,$\displaystyle \frac{r_2}{r_1}$を求めよ.

(3)$\displaystyle \angle \mathrm{PRQ}=\theta_1,\ \angle \mathrm{PSQ}=\theta_2$とするとき,$\displaystyle \frac{r_2}{r_1}$を$\theta_1$と$\theta_2$を用いて表せ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。