タグ「直線」の検索結果

28ページ目:全2462問中271問~280問を表示)
東京電機大学 私立 東京電機大学 2016年 第5問
$a$を実数とする.$2$つの放物線$C_1:y=x^2$,$C_2:y=-x^2+2x+a$は異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.次の各問に答えよ.

(1)$a$の値の範囲を求めよ.
(2)$\mathrm{P}$,$\mathrm{Q}$における$C_1$の接線をそれぞれ$\ell_1$,$\ell_2$とする.$\ell_1$,$\ell_2$が互いに直交するような$a$の値を求めよ.
(3)$C_1,\ C_2$で囲まれた図形の面積が$9$となるような$a$の値を求めよ.
近畿大学 私立 近畿大学 2016年 第3問
放物線$y=4x^2+x$を$C$とし,$a$を正の実数とする.

(1)$C$上の点$(1,\ 5)$における接線の方程式を求めよ.
(2)点$(0,\ -a)$から$C$へ引いた$2$つの接線を$\ell_1,\ \ell_2$とする.ただし$\ell_1$の傾きは$\ell_2$の傾きより大きいとする.また,$\ell_1,\ \ell_2$と$C$との接点をそれぞれ$\mathrm{A}_1,\ \mathrm{A}_2$とする.$\ell_1,\ \ell_2$の方程式と$\mathrm{A}_1,\ \mathrm{A}_2$の座標を求めよ.
(3)$2$点$\mathrm{A}_1,\ \mathrm{A}_2$を通る直線および$C$で囲まれた図形の面積$S_1$を求めよ.
(4)$\ell_1,\ \ell_2$と$C$で囲まれた図形の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$を求めよ.
天使大学 私立 天使大学 2016年 第2問
次の問いに答えなさい.

(1)分母と分子が整数である有理数全体の集合を$Q$とおく.さらに$2$以上$4$以下で分母が$15$である$Q$の部分集合を$U$とおく.次の問いに答えなさい.

(i) 分子が$3$の倍数である$U$の要素の個数$N_1$と分子が$5$の倍数である$U$の要素の個数$N_2$を求めなさい.

$N_1=\mkakko{$\mathrm{a}$} \mkakko{$\mathrm{b}$}$ \quad $N_2=\mkakko{$\mathrm{c}$}$

(ii) $U$の要素の中で,既約分数の個数を$N_3$とする.$N_3$を求めなさい.

$N_3=\mkakko{$\mathrm{d}$} \mkakko{$\mathrm{e}$}$


(2)三角形$\mathrm{ABC}$において$\angle \mathrm{A}={30}^\circ$,$\angle \mathrm{B}={90}^\circ$とする.直線$\mathrm{AB}$上に$\mathrm{AP}=\mathrm{AC}$を満たす点$\mathrm{P}$をとり,$\angle \mathrm{CPA}=\theta$とおく.次の問いに答えなさい.

(i) $\mathrm{BA}>\mathrm{BP}$のとき,$\tan \theta=\mkakko{$\mathrm{f}$}+\mkakko{$\mathrm{g}$} \sqrt{\mkakko{$\mathrm{h}$}}$である.
(ii) $\mathrm{BA}<\mathrm{BP}$のとき,$\tan \theta=\mkakko{$\mathrm{i}$}+\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$} \sqrt{\mkakko{$\mathrm{l}$}}$である.
天使大学 私立 天使大学 2016年 第5問
次の問いに答えなさい.

(1)三角形$\mathrm{ABC}$において$\mathrm{BC}=10$,$\mathrm{CA}=2 \sqrt{5}$であり,この三角形は円$\mathrm{O}$に内接している.また点$\mathrm{A}$における円$\mathrm{O}$の接線と直線$\mathrm{BC}$との交点を$\mathrm{D}$とすると$\displaystyle \mathrm{AD}=\frac{20}{3}$である.次の問いに答えなさい.

(i) $\mathrm{DC}=\frac{\mkakko{$\mathrm{a}$} \mkakko{$\mathrm{b}$}}{\mkakko{$\mathrm{c}$}}$,$\mathrm{AB}=\mkakko{$\mathrm{d}$} \sqrt{\mkakko{$\mathrm{e}$}}$である.
(ii) 円$\mathrm{O}$の半径は$\mkakko{$\mathrm{f}$}$であり,$\triangle \mathrm{ABD}$の面積は$\displaystyle \frac{\mkakko{$\mathrm{g}$} \mkakko{$\mathrm{h}$}}{\mkakko{$\mathrm{i}$}}$である.

(2)実数$x$に対して$3$つの条件$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$がある.ただし$a$は定数である.

$\mathrm{P}:2x-5 \geqq x+6$
$\mathrm{Q}:x^2-(2a-1)x+a^2-a-12 \leqq 0$
$\mathrm{R}:13 \leqq x \leqq 16$

次の問いに答えなさい.

(i) $\mathrm{Q}$が$\mathrm{P}$であるための十分条件となるとき$\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$} \leqq a$であり,$\mathrm{Q}$が$\mathrm{R}$であるための必要条件となるとき$\mkakko{$\mathrm{l}$} \mkakko{$\mathrm{m}$} \leqq a \leqq \mkakko{$\mathrm{n}$} \mkakko{$\mathrm{o}$}$である.
(ii) $(ⅰ)$より,$\mathrm{Q}$が$\mathrm{P}$であるための十分条件で,かつ$\mathrm{Q}$が$\mathrm{R}$であるための必要条件となることを満たす定数$a$のうち整数は,小さい順に$\mkakko{$\mathrm{p}$} \mkakko{$\mathrm{q}$}$,$\mkakko{$\mathrm{r}$} \mkakko{$\mathrm{s}$}$,$\mkakko{$\mathrm{t}$} \mkakko{$\mathrm{u}$}$である.
近畿大学 私立 近畿大学 2016年 第2問
次の問いに答えよ.

(1)方程式$x^3-3x^2-9x-k=0$が異なる$3$個の実数解を持つように,定数$k$の範囲を定めよ.
(2)辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{AC}=5$の三角形$\mathrm{ABC}$がある.$\cos A$の値を求めよ.$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とすると,三角形$\mathrm{ABD}$の外接円の直径を求めよ.
(3)三角形$\mathrm{ABC}$がある.辺$\mathrm{AC}$の中点を$\mathrm{P}$,線分$\mathrm{BP}$を$t:1-t$に内分する点を$\mathrm{Q}$,直線$\mathrm{CQ}$と辺$\mathrm{AB}$の交点を$\mathrm{R}$とする.$\displaystyle \frac{\mathrm{CQ}}{\mathrm{CR}}$を$t$の式で表せ.また三角形$\mathrm{BQR}$と三角形$\mathrm{CQP}$の面積が等しくなるように$t$の値を定めよ.
近畿大学 私立 近畿大学 2016年 第2問
等式
\[ f^\prime(x)=x^2+2 \left( \int_0^1 f(t) \, dt \right) x \]
を満たす関数$y=f(x)$を考える.$\displaystyle c=\int_0^1 f(t) \, dt$とおく.

(1)$\displaystyle f(x)=\frac{1}{3}x^3+cx^2+\left( \frac{[ア]}{[イ]}c-\frac{[ウ]}{[エオ]} \right)$であり,

$f(0)=1$のとき,$\displaystyle c=\frac{[カキ]}{[ク]}$である.

(2)$c<0$とし,$f(x)$は$0 \leqq x \leqq 1$において$x=1$で最大値をとるものとする.このとき,$c$のとりうる最小の値は
\[ \frac{[ケコ]}{[サ]} \]
であり,$f(x)$の$0 \leqq x \leqq 1$における最小値は$c$を用いて
\[ \frac{[シ]}{[ス]} c^{\mkakko{セ}}+\frac{[ソ]}{[タ]}c-\frac{[チ]}{[ツテ]} \]
と表すことができる.
(3)座標平面において,関数$y=f(x)$のグラフと直線
\[ y=-\frac{3}{4}c^2x-\frac{1}{12} \]
が点$(-1,\ f(-1))$で接するとき,$c=[ト]$である.このとき,$2$つのグラフのもう$1$つの共有点の$x$座標は$[ナニ]$である.
近畿大学 私立 近畿大学 2016年 第2問
等式
\[ f^\prime(x)=x^2+2 \left( \int_0^1 f(t) \, dt \right) x \]
を満たす関数$y=f(x)$を考える.$\displaystyle c=\int_0^1 f(t) \, dt$とおく.

(1)$\displaystyle f(x)=\frac{1}{3}x^3+cx^2+\left( \frac{[ア]}{[イ]}c-\frac{[ウ]}{[エオ]} \right)$であり,

$f(0)=1$のとき,$\displaystyle c=\frac{[カキ]}{[ク]}$である.

(2)$c<0$とし,$f(x)$は$0 \leqq x \leqq 1$において$x=1$で最大値をとるものとする.このとき,$c$のとりうる最小の値は
\[ \frac{[ケコ]}{[サ]} \]
であり,$f(x)$の$0 \leqq x \leqq 1$における最小値は$c$を用いて
\[ \frac{[シ]}{[ス]} c^{\mkakko{セ}}+\frac{[ソ]}{[タ]}c-\frac{[チ]}{[ツテ]} \]
と表すことができる.
(3)座標平面において,関数$y=f(x)$のグラフと直線
\[ y=-\frac{3}{4}c^2x-\frac{1}{12} \]
が点$(-1,\ f(-1))$で接するとき,$c=[ト]$である.このとき,$2$つのグラフのもう$1$つの共有点の$x$座標は$[ナニ]$である.
近畿大学 私立 近畿大学 2016年 第3問
座標平面において,次の式で与えられる$2$つの円$C$,$C^\prime$を考える.

$C:x^2+y^2=13$
$C^\prime:x^2+y^2-8x+14y+13=0$

$2$つの円の$2$つの共通接線は,点$([アイ],\ [ウ])$で交わり,共通接線$\ell_1,\ \ell_2$の方程式は,それぞれ

$\ell_1:[エ]x+[オ]y=13$
$\ell_2:[カキ]x+y=[クケコ]$

である.

(1)円$C^\prime$と直線$\ell_1$の共有点の座標は$([サ],\ [シス])$である.
(2)$2$つの円の異なる$2$つの交点と$\ell_1$上の点$\mathrm{P}$が同一直線上にあるとき,点$\mathrm{P}$の座標は$([セ],\ [ソ])$である.
(3)円$C$,$C^\prime$の中心をそれぞれ$\mathrm{O}$,$\mathrm{O}^\prime$とする.$\ell_1$上の点$\mathrm{Q}$に対し,$\mathrm{OQ}+\mathrm{O}^\prime \mathrm{Q}$が最小となるとき,$\mathrm{Q}$の座標は
\[ \left( [タ],\ \displaystyle\frac{[チ]}{[ツ]} \right) \]
である.
京都女子大学 私立 京都女子大学 2016年 第2問
点$\mathrm{A}$を中心とする半径$3$の円$\mathrm{A}$,点$\mathrm{B}$を中心とする半径$4$の円$\mathrm{B}$,点$\mathrm{C}$を中心とする半径$5$の円$\mathrm{C}$の$3$つの円が互いに外接している.円$\mathrm{A}$と円$\mathrm{B}$との接点を$\mathrm{P}$,円$\mathrm{B}$と円$\mathrm{C}$との接点を$\mathrm{Q}$,円$\mathrm{C}$と円$\mathrm{A}$との接点を$\mathrm{R}$とおく.このとき,次の問に答えよ.

(1)$\angle \mathrm{BAC}=\theta$とおく.このとき,$\cos \theta$の値と$\triangle \mathrm{ABC}$の面積を求めよ.
(2)点$\mathrm{P}$における円$\mathrm{A}$の接線と点$\mathrm{R}$における円$\mathrm{A}$の接線との交点を$\mathrm{I}$とおく.直線$\mathrm{AI}$は$\angle \mathrm{PAR}$を二等分していることを証明せよ.
(3)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円の半径を求めよ.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$にあてはまる答えを記入せよ.

(1)$100$未満の自然数で,$3$または$4$または$5$で割り切れる数は$[ア]$個,$3$または$4$で割り切れ$5$では割り切れない数は$[イ]$個である.
(2)\begin{mawarikomi}{45mm}{
(図は省略)
}
右図において,点$\mathrm{I}$を$\triangle \mathrm{ABC}$の内心,点$\mathrm{D}$を直線$\mathrm{AI}$と辺$\mathrm{BC}$の交点とし,$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CA}=6$とする.このとき,$\mathrm{BD}=[ウ]$であり,$\displaystyle \frac{\mathrm{AI}}{\mathrm{ID}}=[エ]$である.
\end{mawarikomi}

(3)整数$a$を$3$進数${122}_{(3)}$で割ったときの商と余りは,それぞれ${212}_{(3)}$と${102}_{(3)}$である.このとき,$a$を$3$進法で表すと${[オ]}_{(3)}$であり,$a$と$5$進数${410}_{(5)}$の和を$5$進法で表すと${[カ]}_{(5)}$である.
(4)不等式$2 |x-a|<x+1$について考える.$a=5$のとき,この不等式を満たす整数$x$は$[キ]$個である.また,この不等式を満たす整数$x$が$5$個あるとき,整数$a$の値は$[ク]$である.
(5)$\displaystyle -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4}$で$\displaystyle \sin \theta+\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta=[ケ]$,$\cos 2\theta=[コ]$である.
(6)$a,\ b$は自然数で,$a^5 b^2$が$20$桁の数であり,かつ,$\displaystyle \frac{a^5}{b^2}$の整数部分が$10$桁であるとする.このとき,$a,\ b$の桁数をそれぞれ$m,\ n$とすると,$m=[サ]$,$n=[シ]$である.
(7)円$x^2+y^2-2(x+y)+1=0$と直線$y+2x=k$が共有点をもつとき,$k$の最大値は$[ス]$である.また,この円と直線$y=ax-3a$が共有点をもつとき,$a$の最小値は$[セ]$である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。