タグ「標準偏差」の検索結果

1ページ目:全13問中1問~10問を表示)
鹿児島大学 国立 鹿児島大学 2016年 第6問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
信州大学 国立 信州大学 2016年 第1問
$2$つの変量$x,\ y$のデータが,$n$個の$x,\ y$の値の組として
\[ (x_1,\ y_1),\ (x_2,\ y_2),\ \cdots,\ (x_n,\ y_n) \]
のように与えられているとする.このとき,以下の問いに答えよ.

(1)$x,\ y$の平均値をそれぞれ$\overline{x},\ \overline{y}$とするとき,変量$x$と$y$の共分散$s_{xy}$は
\[ s_{xy}=\frac{1}{n} \left( \sum_{k=1}^n x_ky_k \right)-\overline{x} \; \overline{y} \]
であることを示せ.
(2)これらのデータの間には,$y_k=ax_k+b (k=1,\ 2,\ \cdots,\ n)$という関係があるとする.ただし,$a,\ b$は実数で,$a \neq 0$である.変量$x$の標準偏差$s_x$は$0$でないとする.このとき,$x$と$y$の相関係数を求めよ.
星薬科大学 私立 星薬科大学 2016年 第1問
$2$つの変量$x,\ y$の$16$個のデータ$(x_1,\ y_1)$,$(x_2,\ y_2)$,$\cdots$,$(x_{16},\ y_{16})$が

$x_1+x_2+\cdots +x_{16}=72,$
$y_1+y_2+\cdots +y_{16}=120,$
${x_1}^2+{x_2}^2+\cdots +{x_{16}}^2=349,$
${y_1}^2+{y_2}^2+\cdots +{y_{16}}^2=925,$
$x_1y_1+x_2y_2+\cdots +x_{16}y_{16}=545$

を満たしているとき,次の問に小数で答えよ.

(1)変量$x,\ y$のデータの平均をそれぞれ$\overline{x},\ \overline{y}$とすると,
\[ \overline{x}=[$1$]. [$2$],\quad \overline{y}=[$3$]. [$4$] \]
である.
(2)変量$x,\ y$のデータの標準偏差をそれぞれ$s_x,\ s_y$とすると,
\[ s_x=[$5$]. [$6$][$7$],\quad s_y=[$8$]. [$9$][$10$] \]
である.また,変量$x,\ y$のデータの共分散を$s_{xy}$とすると,
\[ s_{xy}=[$11$]. \kakkofour{$12$}{$13$}{$14$}{$15$} \]
である.
(3)変量$x,\ y$のデータの相関係数を$r$とすると,$r=[$16$]. [$17$]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2016年 第1問
次の問いに答えよ.

(1)全体集合$U$の要素の個数が$50$,$U$の部分集合$A,\ B,\ C$の要素の個数がそれぞれ$33$,$36$,$37$である.$A \cap B \cap C$の要素の個数の最小値を求めよ.
(2)$70$より大きい$2$桁の素数の値すべてからなる$1$組のデータがある.ただし,同じ値は重複していない.このデータの標準偏差を求めよ.
(3)$(0.9)^n<0.01$を満たす最小の整数$n$を求めよ.ただし小数第$5$位を四捨五入したとき$\log_{10}3=0.4771$である.
(4)極方程式$r=2(\cos \theta+\sin \theta)$の表す曲線を直交座標$(x,\ y)$に関する方程式で表す.$x=1$に対する$y$をすべて求めよ.
(5)複素数平面上に点$\mathrm{A}$を直角の頂点とする直角二等辺三角形$\mathrm{ABC}$がある.$\mathrm{A}(2+i)$,$\mathrm{B}(4+4i)$のとき点$\mathrm{C}$を表す複素数を求めよ.
(6)$\displaystyle \lim_{x \to \infty} (\sqrt{3x^2+2x+1}+ax+b)=0$が成り立つように定数$a,\ b$の値を定めよ.
(7)$x>0$で定義される関数$\displaystyle f(x)=\frac{\log 2x}{x^2}$の最大値を求めよ.
(8)曲線$x=3(t-\sin t)$,$y=3(1-\cos t)$の$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の部分の長さを求めよ.
釧路公立大学 公立 釧路公立大学 2016年 第1問
次の問いに答えよ.

(1)次の式を展開せよ.

(i) $(x^2+9)(x-3)(x+3)$
(ii) $(x-1)(x+2)(x+3)(x+6)$

(2)次の定積分を求めよ.
\[ \int_0^6 |x^2-4x| \, dx \]
(3)$6$人の生徒の身長を調べたところ,それぞれ
\[ 170,\quad 161,\quad 181,\quad 172,\quad 169,\quad 167 \quad (\mathrm{cm}) \]
であった.このとき$6$人の身長の標準偏差を求めよ.
横浜市立大学 公立 横浜市立大学 2016年 第1問
以下の問いに答えよ.

(1)ある大学で$N$人の学生が数学を受験した.その得点を$x_1,\ x_2,\ \cdots,\ x_N$とする.平均値$\overline{x}$および分散$s^2$は各々

$\displaystyle \overline{x}=\frac{x_1+x_2+\cdots +x_N}{N}$
$\displaystyle s^2=\frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+\cdots +(x_N-\overline{x})^2}{N}$

で与えられる.標準偏差$s (>0)$は
\[ s=\sqrt{s^2} \]
となる.このとき$x$点を取った学生の{\bf 偏差値}は
\[ t=50+10 \times \frac{x-\overline{x}}{s} \]
で与えられる($x \in \{x_1,\ x_2,\ \cdots,\ x_N\}$).偏差値は{\bf 無単位}であることに注意せよ.
$\mathrm{Y}$大学で$N=3n$人の学生が数学を受験し,たまたま$2n$人の学生が$a$点,残りの$n$人の学生が$b$点を取ったとしよう.簡単にするために$a<b$とする.$a$点を取った学生および$b$点を取った学生の偏差値を求めよ.
(2)方程式
\[ x^2-3y^2=13 \]
の整数解を求める.簡単にするために$x>0,\ y>0$とする.まず
\[ X=ax+by,\quad Y=cx+dy \]
とおく.$a,\ b,\ c,\ d$を自然数として,$(X,\ Y)$が再び方程式
\[ X^2-3Y^2=13 \]
を満たすための組$(a,\ b,\ c,\ d)$を$1$つ求めよ.
次に,解の組$(x,\ y)$で$x>500$となる$(x,\ y)$を$1$つ求めよ.
(3)$n$を自然数とする.漸化式

$a_{n+2}-5a_{n+1}+6a_n-6n=0$
$a_1=1,\ a_2=1$

で定められる数列$\{a_n\}$の一般項を求めよ.
(4)$n$を$0$以上の整数とする.以下の不定積分を求めよ.
\[ \int \left\{ -\frac{(\log x)^n}{x^2} \right\} \, dx=\sum_{k=0}^n [ ] \]
ただし,積分定数は書かなくてよい.
一橋大学 国立 一橋大学 2015年 第5問
次の$\tocichi$,$\tocni$のいずれか一方を選択して解答せよ.

\mon[$\tocichi$] 数列$\{a_k\}$を$\displaystyle a_k=k+\cos \left( \frac{k\pi}{6} \right)$で定める.$n$を正の整数とする.

\mon[$(1)$] $\displaystyle \sum_{k=1}^{12n} a_k$を求めよ.
\mon[$(2)$] $\displaystyle \sum_{k=1}^{12n} {a_k}^2$を求めよ.

\mon[$\tocni$] $a,\ b,\ c$は異なる$3$つの正の整数とする.次のデータは$2$つの科目$\mathrm{X}$と$\mathrm{Y}$の試験を受けた$10$人の得点をまとめたものである.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
& $①$ & $②$ & $③$ & $④$ & $⑤$ & $⑥$ & $④chi$ & $\maruhachi$ & $\marukyu$ & $\marujyu$ \\ \hline
科目$\mathrm{X}$の得点 & $a$ & $c$ & $a$ & $b$ & $b$ & $a$ & $c$ & $c$ & $b$ & $c$ \\ \hline
科目$\mathrm{Y}$の得点 & $a$ & $b$ & $b$ & $b$ & $a$ & $a$ & $b$ & $a$ & $b$ & $a$ \\ \hline
\end{tabular}

科目$\mathrm{X}$の得点の平均値と科目$\mathrm{Y}$の得点の平均値とは等しいとする.
\mon[$(1)$] 科目$\mathrm{X}$の得点の分散を$s_{\mathrm{X}}^2$,科目$\mathrm{Y}$の得点の分散を$s_{\mathrm{Y}}^2$とする.$\displaystyle \frac{s_{\mathrm{X}}^2}{s_{\mathrm{Y}}^2}$を求めよ.
\mon[$(2)$] 科目$\mathrm{X}$の得点と科目$\mathrm{Y}$の得点の相関係数を,四捨五入して小数第$1$位まで求めよ.
\mon[$(3)$] 科目$\mathrm{X}$の得点の中央値が$65$,科目$\mathrm{Y}$の得点の標準偏差が$11$であるとき,$a,\ b,\ c$の組を求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第8問
次の各問いに答えよ.

(1)数字$1$が書かれた玉$a$個($a \geqq 1$)と,数字$2$が書かれた玉$1$個がある.これら$a+1$個の玉を母集団として,玉に書かれている数字を変量とする.このとき,この母集団から復元抽出によって大きさ$3$の無作為標本を抽出し,その玉の数字を取り出した順に$X_1$,$X_2$,$X_3$とする.標本平均$\displaystyle \overline{X}=\frac{X_1+X_2+X_3}{3}$の平均$E(\overline{X})$が$\displaystyle \frac{3}{2}$であるとき,$\overline{X}$の確率分布とその分散$V(\overline{X})$を求めよ.ただし,復元抽出とは,母集団の中から標本を抽出するのに,毎回もとに戻してから次のものを$1$個取り出す抽出法である.
(2)ある企業の入社試験は採用枠$300$名のところ$500$名の応募があった.試験の結果は$500$点満点の試験に対し,平均点$245$点,標準偏差$50$点であった.得点の分布が正規分布であるとみなされるとき,合格最低点はおよそ何点であるか.小数点以下を切り上げて答えよ.ただし,確率変数$Z$が標準正規分布に従うとき,$P(Z>0.25)=0.4$,$P(Z>0.5)=0.3$,$P(Z>0.54)=0.2$とする.
スポンサーリンク

「標準偏差」とは・・・

 まだこのタグの説明は執筆されていません。