タグ「概形」の検索結果

1ページ目:全86問中1問~10問を表示)
神戸大学 国立 神戸大学 2016年 第5問
極方程式で表された$xy$平面上の曲線$r=1+\cos \theta (0 \leqq \theta \leqq 2\pi)$を$C$とする.以下の問に答えよ.

(1)曲線$C$上の点を直交座標$(x,\ y)$で表したとき,$\displaystyle \frac{dx}{d\theta}=0$となる点,および$\displaystyle \frac{dy}{d\theta}=0$となる点の直交座標を求めよ.
(2)$\displaystyle \lim_{\theta \to \pi} \frac{dy}{dx}$を求めよ.
(3)曲線$C$の概形を$xy$平面上にかけ.
(4)曲線$C$の長さを求めよ.
大分大学 国立 大分大学 2016年 第4問
$2$つの曲線$\displaystyle y=x+2 \cos x \left( \frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$と$\displaystyle y=x-2 \cos x \left( \frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$をつないでできる曲線を$C$とする.

(1)曲線$C$の概形を図示しなさい.
(2)$k$を実数とする.曲線$C$と直線$y=k$が異なる$2$点で交わるための$k$の値の範囲を求めなさい.
(3)曲線$C$で囲まれた部分を$x$軸のまわりに$1$回転してできる立体の体積を求めなさい.
岡山大学 国立 岡山大学 2016年 第3問
$a$は正の数とし,次の関数$y=f_a(x)$のグラフの変曲点を$\mathrm{P}$とする.
\[ f_a(x)=axe^{-\frac{x}{a}} \quad (x \geqq 0) \]
このとき以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)$a$が区間$1 \leqq a \leqq 2$全体を動くとき,点$\mathrm{P}$が描く曲線$C$の概形を図示せよ.
(3)$x \geqq 0$における曲線$y=f_1(x)$,$y=f_2(x)$と$(2)$の曲線$C$の$3$曲線で囲まれた部分の面積を求めよ.
岐阜大学 国立 岐阜大学 2016年 第4問
数列$\{r_n\}$を初項$r_1=1$,公差$1$の等差数列とする.また,数列$\{a_n\}$を次の式で定める.
\[ a_n={r_n}^2+\frac{1}{4} \quad (n=1,\ 2,\ 3,\ \cdots) \]
以下の問に答えよ.

(1)一般項$a_n$を求めよ.
(2)円$C_n:x^2+(y-a_n)^2={r_n}^2$と放物線$P:y=x^2$の共有点の座標を求めよ.
(3)円$C_n$と円$C_{n+1}$の共有点$(x_n,\ y_n)$の座標を求めよ.
(4)円$C_1,\ C_2,\ C_3$と放物線$P$の概形を描け.
東京工業大学 国立 東京工業大学 2016年 第5問
次のように媒介変数表示された$xy$平面上の曲線を$C$とする:
\[ \left\{ \begin{array}{l}
x=3 \cos t-\cos 3t \phantom{\frac{8}{8}} \\
y=3 \sin t-\sin3 t \phantom{\frac{[ ]}{8}}
\end{array} \right. \]
ただし$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$である.

(1)$\displaystyle \frac{dx}{dt}$および$\displaystyle \frac{dy}{dt}$を計算し,$C$の概形を図示せよ.
(2)$C$と$x$軸と$y$軸で囲まれた部分の面積を求めよ.
九州工業大学 国立 九州工業大学 2016年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円を$C_1$とする.円$C_1$に外接しながら,半径$1$の円$C_2$がすべることなく回転する.円$C_2$の中心を$\mathrm{P}$とし,円$C_2$上の点$\mathrm{Q}$は最初,$x$軸上の点$\mathrm{A}(3,\ 0)$にあるものとする.半直線$\mathrm{PQ}$上で点$\mathrm{P}$からの距離が$2$の点を$\mathrm{R}$とし,$\mathrm{OP}$が$x$軸の正の向きとなす角を$\theta$とする.$C_2$が回転して$\theta$が$0$から$2\pi$まで変化するとき,点$\mathrm{R}$が描く曲線を$C$とする.曲線$C$の概形を図$1$に示す.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$を通り$x$軸と平行な直線を$\ell$とする.直線$\ell$と線分$\mathrm{PR}$のなす角$\alpha$を,$\theta$を用いて表せ.また,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(3)曲線$C$と$x$軸の共有点の座標をすべて求めよ.
(4)曲線$C$と$y$軸の共有点の座標をすべて求めよ.
(5)点$\mathrm{R}$の$x$座標が最小となるときの点$\mathrm{R}$の座標をすべて求めよ.
(6)曲線$C$と$x$軸,$y$軸に囲まれた図$2$の斜線部分の面積を求めよ.
山梨大学 国立 山梨大学 2016年 第4問
$y=e^{-\pi x} \sin (\pi x)$で定められた曲線を$C$とする.

(1)$0 \leqq x \leqq 2$の範囲で$C$の概形をかけ.ただし,凹凸を調べる必要はない.
(2)$n$を自然数とする.$C$の$n-1 \leqq x \leqq n$の部分と$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)$(2)$の$S_n$について,$\displaystyle \sum_{n=1}^\infty S_n$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第4問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
宮崎大学 国立 宮崎大学 2016年 第5問
$k>0$,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.座標平面上の原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$に対し,第一象限の点$\mathrm{P}$を,$\angle \mathrm{AOP}=\theta$を満たすように円$D:x^2+y^2=1$上にとり,直線$\mathrm{OP}$と直線$x=k \theta$との交点を$\mathrm{Q}$とする.$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で動かすときの点$\mathrm{Q}$の軌跡を曲線$y=f(x)$とし,関数$\displaystyle y=g(x)=\frac{f(x)}{x}$で定める曲線を$C$とする.このとき,次の各問に答えよ.

(1)$r(\theta)=\mathrm{OQ}$とするとき,$\displaystyle \lim_{\theta \to +0} r(\theta)$の値を求めよ.
(2)点$\mathrm{Q}$がつねに円$D$の内部にあるための$k$の条件を求めよ.
(3)関数$g(x)$の増減と凹凸を調べ,曲線$C$の概形をかけ.
(4)曲線$C$と$x$軸および$2$直線$\displaystyle x=\frac{\pi}{4}k$,$\displaystyle x=\frac{\pi}{3}k$とで囲まれた図形を$x$軸のまわりに$1$回転させてできる立体の体積を,$k$を用いて表せ.
旭川医科大学 国立 旭川医科大学 2016年 第3問
$a$を正の実数とする.点$\mathrm{P}$は曲線$C_a:y=e^{ax}$上を,点$\mathrm{Q}$は直線$y=x$をそれぞれ動く.このとき,次の問いに答えよ.

(1)曲線$C_a$と直線$y=x$が共有点をもたないような$a$の値の範囲を求めよ.
(2)$(1)$で求めた範囲にある$a$に対して,線分$\mathrm{PQ}$の長さの最小値を$d(a)$とする.$\mathrm{PQ}$の長さが$d(a)$となる曲線$C_a$上の点を$\mathrm{P}_a$とする.

(i) $d(a)$を求めよ.
(ii) 点$\mathrm{P}_a$における曲線$C_a$の接線の傾きを求めよ.
(iii) $a$が$(1)$で求めた範囲を動くときの点$\mathrm{P}_a$の軌跡を求め,その概形を図示せよ.

(3)$d(a)$の最大値と,そのときの$a$の値を求めよ.
スポンサーリンク

「概形」とは・・・

 まだこのタグの説明は執筆されていません。