タグ「最大値」の検索結果

14ページ目:全1143問中131問~140問を表示)
玉川大学 私立 玉川大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle \int_0^2 |x^2-3x+2| \, dx=[ア]$.

(2)$\displaystyle \left( x^2-\frac{1}{2x} \right)^5$の$x$の項の係数は$\displaystyle \frac{[イウ]}{[エ]}$で,$x^7$の項の係数は$\displaystyle \frac{[オカ]}{[キ]}$である.

(3)$\displaystyle \frac{x^2+2x+2}{(x-1)(x^2-x+1)}=\frac{A}{x-1}+\frac{Bx+C}{x^2-x+1}$は$x$について恒等式である.このとき,$A$,$B$,$C$は,
\[ A=[ク],\quad B=[ケコ],\quad C=[サ] \]
である.
(4)方程式$x(x+1)(x+2)=60$の解は,$x=[シ],\ [スセ] \pm \sqrt{[ソタ]}i$である.
(5)$\displaystyle -1,\ \frac{3}{2},\ -1+i,\ -1-i$が$4$次方程式$x^4+ax^3+bx^2+cx+d=0$の解であるとき,
\[ a=\frac{[チ]}{[ツ]},\quad b=\frac{[テト]}{[ナ]},\quad c=[ニヌ],\quad d=[ネノ] \]
である.
(6)関数$y=4^x-2^{x+1}+3 (-1 \leqq x \leqq 2)$は,$x=[ハ]$のとき,最大値$[ヒフ]$をとり,$x=[ヘ]$のとき,最小値$[ホ]$をとる.
(7)$f^\prime(a)$が存在するとき,


$\displaystyle \lim_{h \to 0} \frac{f(a+h)-f(a-h)}{h}=[マ]f^\prime(a),$

$\displaystyle \lim_{h \to 0} \frac{f(a+3h)-f(a+h)}{h}=[ミ]f^\prime(a)$


が成り立つ.
東京薬科大学 私立 東京薬科大学 2016年 第2問
次の問に答えよ.

(1)関数$y=\log_{\frac{1}{2}}(3-x)$のグラフ$C_1$は,$y=\log_2 (x+1)$のグラフ$C_2$を原点について対称移動し,$x$軸方向に$[ソ]$だけ平行移動したものであり,$C_1$と$C_2$の交点の座標は
\[ \left( [タ] \pm \sqrt{[チ]},\ \log_2 \left( [ツ] \pm \sqrt{[テ]} \right) \right) \quad \text{(複号同順)} \]
である.また,関数$y=\log_2 (x+1)-\log_{\frac{1}{2}}(3-x)$は$x=[ト]$のとき,最大値$[ナ]$をとる.
(2)赤球$3$個,青球$2$個,白球$1$個の計$6$個の球を横一列に並べるとき,並べ方は全部で$[ニヌ]$通りある.
東京経済大学 私立 東京経済大学 2016年 第2問
長さ$3$の線分$\mathrm{AB}$を直径とする半円周上を点$\mathrm{P}$が動いている.$\angle \mathrm{PAB}={15}^\circ$のとき,$\displaystyle \mathrm{BP}=\frac{[キ] \left( \sqrt{[ク]}-\sqrt{[ケ]} \right)}{[コ]}$である.また,$\angle \mathrm{PAB}=\theta$とおくとき,$\sqrt{3} \mathrm{AP}+\mathrm{BP}$の値が最大となるのは,$\displaystyle \theta=\frac{[サ]}{[シ]} \pi$のときで,最大値は$[ス]$である.
福岡大学 私立 福岡大学 2016年 第1問
次の$[ ]$をうめよ.

(1)$2$次関数$y=f(x)$のグラフが$3$点$(-1,\ -1)$,$(2,\ 2)$,$(3,\ -5)$を通るとき,$f(x)=[ ]$であり,$f(x)$の区間$-3 \leqq x \leqq 4$における最小値は$[ ]$である.
(2)$0 \leqq x<2\pi$のとき,関数$f(x)=\cos 2x+2 \cos x$の最大値と最小値の差は$[ ]$であり,$f(x)$が最小値をとる$x$の値は$[ ]$である.
(3)赤球$3$個,白球$4$個,青球$5$個が入っている袋から,$3$個の球を$1$個ずつ取り出すとき,$3$個とも白球である確率は$[ ]$であり,$3$個目が白球である確率は$[ ]$である.ただし,取り出した球はもとに戻さないものとする.
福岡大学 私立 福岡大学 2016年 第2問
次の$[ ]$をうめよ.

(1)方程式$\log_2 (5-x)=\log_8 (x^2-15)$を解くと$[ ]$である.また,変数$a,\ b$が$\log_9 a=(\log_3 b)^2$をみたすとき$\displaystyle \left( \frac{a}{b} \right)^8$の最小値は$[ ]$である.
(2)$a_1=-30$,$a_{n+1}-a_n=-2n+18$で定められる数列$\{a_n\}$について,$a_n>0$である$n$の個数を求めると$[ ]$であり,$\displaystyle S_n=\sum_{k=1}^n a_k$の最大値を求めると$[ ]$である.
東洋大学 私立 東洋大学 2016年 第4問
$xy$平面において,点$\mathrm{P}$が単位円周上の$y \geqq 0$の部分を動くとき,点$\mathrm{P}$から単位円周上の$3$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\displaystyle \mathrm{C} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$までの距離の和$\mathrm{PA}+\mathrm{PB}+\mathrm{PC}$を$L$とする.以下,$L$の最大値を求める.点$\mathrm{P}$の座標を$(\cos \theta,\ \sin \theta)$とおき,$L$を$\theta$の式で表すと,


$\displaystyle L=\sqrt{(\cos \theta-[ア])^2+\sin^2 \theta}+\sqrt{(\cos \theta+[イ])^2+\sin^2 \theta}$

$\displaystyle +\sqrt{\left( \cos \theta-\frac{1}{[ウ]} \right)^2+\left( \sin \theta-\frac{\sqrt{[エ]}}{[オ]} \right)^2}$


と表される.整理すると,たとえば,点$\mathrm{P}$が第$2$象限にあるとき,
\[ L=\left( [カ]+\sqrt{[キ]} \right) \sin \frac{\theta}{[ク]}+\cos \frac{\theta}{[ケ]} \]
となり,適当な実数$\alpha$を用いて
\[ L=\sqrt{[コ]+[サ] \sqrt{[シ]}} \sin \left( \frac{\theta}{[ス]}+\alpha \right) \]
と表すことができる.よって,$L$の最大値は,$\sqrt{[セ]}+\sqrt{[ソ]}$である.ただし,$[セ]>[ソ]$とする.
福岡大学 私立 福岡大学 2016年 第5問
平均値と中央値は共に代表値であり,求め方は全く異なるが比較的近い値であることが多い.いま,偶数個の身長のデータがあり,その最小値は$m=140 \, \mathrm{cm}$,最大値は$M=180 \, \mathrm{cm}$である.このデータの中央値が$A=150 \, \mathrm{cm}$のとき,半数のデータは$m$以上$A$以下の値であり,残る半数のデータは$A$以上$M$以下である.このことから平均値$\overline{x}$のとる値の範囲は$[ ]$である.また,平均値と中央値の関係を用いると,最小値が$m=140 \, \mathrm{cm}$,最大値が$M=180 \, \mathrm{cm}$である偶数個のデータの平均値が$\overline{x}=170 \, \mathrm{cm}$であるとき,中央値$A$の取る値の範囲は$[ ]$である.
金沢工業大学 私立 金沢工業大学 2016年 第2問
関数$y=7 \sin^2 \theta+3 \cos 2 \theta+6 \cos \theta (0 \leqq \theta \leqq \pi)$を考える.

(1)$\cos \theta=t$とおくと,$t$の値の範囲は$[アイ] \leqq t \leqq [ウ]$である.
(2)$y$は$t$の$2$次関数として,
\[ y=-t^2+[エ]t+[オ] \quad ([アイ] \leqq t \leqq [ウ]) \]
と表される.
(3)$y$は$\theta=[カ]$で最大値$[キ]$をとり,$\theta=[ク]$で最小値$[ケコ]$をとる.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第3問
$a$を正の定数,$e$を自然対数の底として,$\displaystyle f(x)=\int_0^a |xe^x-te^t| \, dt (0 \leqq x \leqq a)$とする.以下の$[ ]$にあてはまる適切な数,または式を記入しなさい.また,$(2)$に答えなさい.

(1)$f(0)=[ ]$であり,$f(a)=[ ]$である.
(2)$f(x)$を$a$と$x$を用いた式で表せ(途中の計算式も合わせて記載せよ).
(3)$f^\prime(x)=0$のとき,$x=[ ]$である.
(4)$f(x)$の最小値は$[ ]$,最大値は$[ ]$である.
東京電機大学 私立 東京電機大学 2016年 第1問
次の各問に答えよ.

(1)不等式$x^2-x-5<|2x-1|$を解け.
(2)和が$22$,最小公倍数が$60$となる$2$つの自然数を求めよ.
(3)関数$y=4 \sin^2 x-4 \cos x-3 (0 \leqq x \leqq \pi)$の最大値を求めよ.またそのときの$x$の値を求めよ.
(4)曲線$y=e^x$上の点$(t,\ e^t)$と直線$y=2x$の距離を$d(t)$とする.$d(t)$の最小値を求めよ.
(5)不定積分$\displaystyle \int \log 2x \, dx$を計算せよ.ただし積分定数は$C$とすること.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。