タグ「曲線」の検索結果

16ページ目:全1320問中151問~160問を表示)
神奈川大学 私立 神奈川大学 2016年 第2問
関数$f(x)=(x-k)^2$と$g(x)=-(x-2)^2+4$について,次の問いに答えよ.ただし,$k$は定数である.

(1)曲線$y=g(x)$について,傾きが$-2$である接線の方程式を求めよ.また,その接点の座標を求めよ.
(2)方程式$f(x)-g(x)=0$が異なる$2$つの実数解をもつような$k$の値の範囲を求めよ.
(3)$k$を$(2)$で求めた範囲にある数とする.さらに,点$\mathrm{P}(x,\ y)$が連立不等式
\[ \left\{ \begin{array}{l}
y \geqq (x-k)^2 \\
y \leqq -(x-2)^2+4 \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. \]
を満たす領域を動くとき,$y+2x$の最大値が$9$となるような$k$の値の範囲を求めよ.
神奈川大学 私立 神奈川大学 2016年 第3問
$k$を正の定数とする.関数$f(x)=kx^2-2 \log x+1$について,曲線$y=f(x)$を$C$とする.次の問いに答えよ.ただし,自然対数の底を$e$で表す.

(1)関数$f(x)$の極値を$k$を用いて表せ.
(2)曲線$C$が$x$軸と接するとき,$k$の値を求めよ.
(3)$k$が$(2)$で求めた値のとき,曲線$C$と$x$軸および直線$x=2e$とで囲まれた部分の面積を求めよ.
甲南大学 私立 甲南大学 2016年 第3問
曲線$C:y=x^3-6x^2+8x$がある.この曲線に傾きが$-1$である$2$本の接線$\ell_1$,$\ell_2$を引く.$C$と$\ell_1$で囲まれる部分の面積を$S_1$,$C$と$\ell_2$で囲まれる部分の面積を$S_2$とする.$S_1$と$S_2$の和を求めよ.
甲南大学 私立 甲南大学 2016年 第3問
曲線$C:y=x^3-6x^2+8x$がある.この曲線に傾きが$-1$である$2$本の接線$\ell_1$,$\ell_2$を引く.$C$と$\ell_1$で囲まれる部分の面積を$S_1$,$C$と$\ell_2$で囲まれる部分の面積を$S_2$とする.$S_1$と$S_2$の和を求めよ.
千葉工業大学 私立 千葉工業大学 2016年 第2問
次の各問に答えよ.

(1)実数$x,\ y$は$x \geqq \sqrt[3]{2}$,$y \geqq 32$,$x^6y=256$をみたしている.$F=(\log_{16}x)(\log_2 y)$は,$t=\log_2 x$とおくと
\[ F=\frac{[アイ]}{[ウ]}t^2+[エ]t \]
と表される.$t$の取り得る値の範囲は$\displaystyle \frac{[オ]}{[カ]} \leqq t \leqq \frac{[キ]}{[ク]}$であり,$F$の最大値は$\displaystyle \frac{[ケ]}{[コ]}$,最小値は$\displaystyle \frac{[サ]}{[シ]}$である.
(2)$x$の関数$f(x)=x(x^2+ax+b)$($a,\ b$は定数)がある.$xy$平面において,原点$\mathrm{O}$と点$\mathrm{A}(5,\ f(5))$を結ぶ線分$\mathrm{OA}$を$4:1$に内分する点を$\mathrm{B}$とする.$\mathrm{B}$の$x$座標は$[ス]$であり,$\mathrm{B}$が曲線$y=f(x)$上にあるとき,$a=[セソ]$である.さらに,$f(x)$が$x=[ス]$で極値をとるとき,$b=[タチ]$であり,$f(x)$の極大値は$[ツテ]$である.
大阪工業大学 私立 大阪工業大学 2016年 第4問
関数$f(x)=x+\sqrt{4-x^2} (-2 \leqq x \leqq 2)$について,次の問いに答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)$f^\prime(-\sqrt{2})$の値を求めよ.また,$f^\prime(x)=0$を解け.
(3)$f(x)$の増減を調べ,$y=f(x)$のグラフをかけ.ただし,凹凸は調べなくてもよい.
(4)$4-x^2=t$とおき,置換積分法を用いて不定積分$\displaystyle \int x \sqrt{4-x^2} \, dx$を求めよ.
(5)曲線$y=f(x)$,$x$軸および直線$x=2$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
工学院大学 私立 工学院大学 2016年 第4問
曲線$C:y=ax^2-6ax (x \leqq 3)$上の点$\mathrm{A}$の$x$座標は$2$である.以下の問いに答えよ.ただし,$a$は負の定数とする.

(1)$C$の点$\mathrm{A}$における接線$\ell$の方程式を求めよ.
(2)点$\mathrm{A}$で$\ell$と垂直に交わる直線$m$の方程式を求めよ.
(3)$C$と$\ell$および$y$軸で囲まれた部分の面積$S_1(a)$を求めよ.
(4)$C$と$m$および$x$軸で囲まれた部分の面積$S_2(a)$を求めよ.
工学院大学 私立 工学院大学 2016年 第5問
曲線$C:y=\sqrt{2x}$上の点$\mathrm{A}$の$x$座標は$4$である.以下の問いに答えよ.

(1)$C$の点$\mathrm{A}$における接線$\ell$の方程式を求めよ.
(2)$C$の点$\mathrm{A}$における法線$m$の方程式を求めよ.
(3)$C$と$\ell$および$y$軸で囲まれた部分の面積$S_1$を求めよ.
(4)$C$と$m$および$x$軸で囲まれた部分の面積を$S_2$とするとき,$\displaystyle \frac{S_1}{S_2}$の値を求めよ.
玉川大学 私立 玉川大学 2016年 第3問
曲線$C_1:4y=x^2$と曲線$C_2:4(x-1)=(y+1)^2$の共通接線$\ell$を$y=Ax+B$とおく.このとき,次の問いに答えよ.

(1)曲線$C_1$と直線$\ell$の接点を$\mathrm{P}(x_1,\ y_1)$とするとき,$x_1,\ y_1$をそれぞれ$A$で表せ.
(2)曲線$C_2$と直線$\ell$の接点を$\mathrm{Q}(x_2,\ y_2)$とするとき,$x_2,\ y_2$をそれぞれ$A$で表せ.
(3)曲線$C_1,\ C_2$の共通接線をすべて求めよ.
玉川大学 私立 玉川大学 2016年 第4問
曲線$C:y=x^3-12x$とその上の点$\mathrm{A}(1,\ -11)$がある.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$を通る曲線$C$の接線$2$本を求めよ.
(2)曲線$y=x^3+px^2+qx+r$と直線$y=mx+n$が異なる$3$点で交わるとき,その交点の$x$座標を左から$a,\ b,\ c$とする.曲線と直線の囲む部分の左側,右側の面積をそれぞれ$S$,$S^\prime$とするとき,
\[ S-S^\prime=\frac{1}{6}(c-a)^3 \left( b-\frac{a+c}{2} \right) \]
を示せ.
(3)点$\mathrm{A}$を通り,$(1)$で求めた$2$直線の傾きの間の値を傾きとしてもつ直線$\ell$と曲線$C$の囲む$2$つの部分の面積が等しい.このとき,直線$\ell$を求めよ.ここで,$(2)$から$\displaystyle b=\frac{a+c}{2}$のとき,$S=S^\prime$となることに注意せよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。