タグ「延長」の検索結果

1ページ目:全56問中1問~10問を表示)
宮崎大学 国立 宮崎大学 2016年 第1問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={90}^\circ$,$\mathrm{AB}:\mathrm{AC}=5:4$とする.辺$\mathrm{BC}$の点$\mathrm{C}$側の延長上に,$\mathrm{CA}=\mathrm{CD}$となる点$\mathrm{D}$をとる.辺$\mathrm{AB}$の中点を$\mathrm{E}$とし,点$\mathrm{B}$から直線$\mathrm{AD}$に下した垂線を$\mathrm{BF}$とするとき,次の各問に答えよ.

(1)$\mathrm{EF}=\mathrm{EC}$を示せ.
(2)面積比$\triangle \mathrm{ABC}:\triangle \mathrm{CEF}$を求めよ.
宮崎大学 国立 宮崎大学 2016年 第2問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={90}^\circ$,$\mathrm{AB}:\mathrm{AC}=5:4$とする.辺$\mathrm{BC}$の点$\mathrm{C}$側の延長上に,$\mathrm{CA}=\mathrm{CD}$となる点$\mathrm{D}$をとる.辺$\mathrm{AB}$の中点を$\mathrm{E}$とし,点$\mathrm{B}$から直線$\mathrm{AD}$に下した垂線を$\mathrm{BF}$とするとき,次の各問に答えよ.

(1)$\mathrm{EF}=\mathrm{EC}$を示せ.
(2)面積比$\triangle \mathrm{ABC}:\triangle \mathrm{CEF}$を求めよ.
旭川医科大学 国立 旭川医科大学 2016年 第2問
原点$\mathrm{O}$を中心とする単位円周上に$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,および$y>0$を満たす動点$\mathrm{C}(x,\ y)$がある.$\angle \mathrm{BAC}=\theta$とするとき,次の問いに答えよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.

(1)$\triangle \mathrm{ABC}$の面積を$\theta$を用いて表せ.
(2)$\triangle \mathrm{ABC}$の内接円$\mathrm{O}_1$の半径$r_1$を$\theta$を用いて表せ.
(3)$x$軸,辺$\mathrm{AC}$の延長線,および辺$\mathrm{BC}$とそれぞれ接する円$\mathrm{O}_2$を考える.$x$軸上の接点を$\mathrm{D}$,辺$\mathrm{AC}$の$\mathrm{C}$側の延長上の接点を$\mathrm{E}$,そして辺$\mathrm{BC}$上の接点を$\mathrm{F}$とする.

(i) $\mathrm{AD}$の長さを$\theta$を用いて表せ.
(ii) 円$\mathrm{O}_2$の半径$r_2$を$\theta$を用いて表せ.
(iii) 円$\mathrm{O}_1$の中心を$\mathrm{I}$,円$\mathrm{O}_2$の中心を$\mathrm{J}$とする.$\displaystyle \frac{r_2}{r_1}=2$となるとき,$\triangle \mathrm{OIJ}$の面積を求めよ.
山形大学 国立 山形大学 2016年 第4問
$\mathrm{AB}=\mathrm{BC}=2$,$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$とする$\triangle \mathrm{ABC}$がある.辺$\mathrm{AC}$上に$\mathrm{A}$と異なる点$\mathrm{E}$をとり,$\mathrm{E}$から辺$\mathrm{AB}$に垂線$\mathrm{EF}$を下ろし,$\mathrm{EF}=\mathrm{AF}=x (0<x \leqq 2)$とする.また,線分$\mathrm{AF}$の$\mathrm{F}$を越える延長上に$\mathrm{AG}=2 \mathrm{AF}$となる点$\mathrm{G}$をとる.$\mathrm{EF}$,$\mathrm{FG}$を$2$辺とする正方形$\mathrm{EFGH}$と$\triangle \mathrm{ABC}$の共通部分の面積を$S(x)$とするとき,次の問いに答えよ.

(1)$S(x)$を求めよ.
(2)$xy$平面において,連立不等式$0 \leqq y \leqq S(x)$,$\displaystyle x \geqq \frac{1}{2}$の表す領域$D$を考える.点$(1,\ 1)$を通り,$D$の面積を二等分する直線を$\ell$とする.

(i) $D$の面積を求めよ.
(ii) 直線$\ell$の方程式を求めよ.
広島女学院大学 私立 広島女学院大学 2016年 第5問
下の図の$\triangle \mathrm{ABC}$において,$\mathrm{BP}:\mathrm{PC}=8:5$,$\mathrm{AQ}:\mathrm{QC}=5:3$,$\mathrm{AP}$と$\mathrm{BQ}$との交点を$\mathrm{S}$,$\mathrm{CS}$の延長と$\mathrm{AB}$との交点を$\mathrm{R}$とする.次の問いに答えよ.
(図は省略)

(1)$\mathrm{AR}:\mathrm{RB}=[$23$]$.
(2)$\mathrm{BS}:\mathrm{SQ}=[$24$]$.
(3)$\mathrm{CS}:\mathrm{SR}=[$25$]$.
(4)$\triangle \mathrm{ASC}:\triangle \mathrm{BSC}=[$26$]$.
早稲田大学 私立 早稲田大学 2016年 第2問
三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とおく.また,$\mathrm{C}$を通り$\mathrm{AD}$と平行な直線と辺$\mathrm{BA}$の延長との交点を$\mathrm{E}$とおく.

ベクトルを$\overrightarrow{\mathrm{AC}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AB}}=\overrightarrow{c}$,辺の長さを$\mathrm{AC}=b$,$\mathrm{AB}=c$,角を$\angle \mathrm{BAC}=\theta$として,次の問に答えよ.


(1)ベクトル$\overrightarrow{\mathrm{CE}}$を$\overrightarrow{b},\ \overrightarrow{c},\ b,\ c$を用いて表せ.
(2)$\displaystyle \cos \frac{\theta}{2}=p$とおく.ベクトル$\overrightarrow{\mathrm{CE}}$の絶対値$f=|\overrightarrow{\mathrm{CE|}}$を$b,\ c,\ p$を用いて表せ.
(3)三角形$\mathrm{BCE}$の重心を$\mathrm{G}$とおく.ベクトル$\overrightarrow{\mathrm{BG}}$を$\overrightarrow{b},\ \overrightarrow{c},\ b,\ c$を用いて表せ.
(4)ベクトル$\overrightarrow{\mathrm{BG}}$と$\overrightarrow{\mathrm{AC}}$が互いに直交するとき,$\cos \theta$を$b,\ c$を用いて表せ.
明治大学 私立 明治大学 2016年 第2問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$の中点を$\mathrm{P}$,線分$\mathrm{BC}$の中点を$\mathrm{Q}$,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[ア]}{[イ]}(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})$である.
(2)線分$\mathrm{AR}$を延長し,三角形$\mathrm{OBC}$と交わる点を$\mathrm{S}$とする.$\mathrm{AR}:\mathrm{AS}=1:t$とすると,$\displaystyle t=\frac{[ウ]}{[エ]}$である.また,$\displaystyle \overrightarrow{\mathrm{OS}}=\frac{[オ]}{[カ]}(\overrightarrow{b}+\overrightarrow{c})$である.
(3)$\angle \mathrm{OAS}=\theta$とすると,$\displaystyle \cos \theta=\frac{\sqrt{[キ]}}{[ク]}$である.
東洋大学 私立 東洋大学 2016年 第1問
次の各問に答えよ.

(1)整式$(a+b-7)^3-(a-b+7)^3$を因数分解すると,
\[ 2(b-[ア])([イ]a^2+b^2-[ウエ]b+[オカ]) \]
となる.
(2)$\log_2 x+\log_2 y=4$のとき,$x^2+y^2$の最小値は$[キク]$で,そのときの$x,\ y$の値は$x=[ケ]$,$y=[コ]$である.
(3)各辺の長さが$\mathrm{AB}=10$,$\mathrm{BC}=8$,$\mathrm{CA}=6$である$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$,$\angle \mathrm{A}$の外角の$2$等分線と辺$\mathrm{BC}$の延長との交点を$\mathrm{E}$とする.このとき,線分$\mathrm{DE}$の長さは$[サシ]$である.
(4)$k$を定数とするとき,方程式$x^3+3x^2-9x-k=0$が異なる$3$個の実数解をもつための必要十分条件は$-[ス]<k<[セソ]$である.
センター試験 問題集 センター試験 2015年 第6問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=\mathrm{AC}=5$,$\mathrm{BC}=\sqrt{5}$とする.辺$\mathrm{AC}$上に点$\mathrm{D}$を$\mathrm{AD}=3$となるようにとり,辺$\mathrm{BC}$の$\mathrm{B}$の側の延長と$\triangle \mathrm{ABD}$の外接円との交点で$\mathrm{B}$と異なるものを$\mathrm{E}$とする.

$\mathrm{CE} \cdot \mathrm{CB}=[アイ]$であるから,$\mathrm{BE}=\sqrt{[ウ]}$である.
$\triangle \mathrm{ACE}$の重心を$\mathrm{G}$とすると,$\displaystyle \mathrm{AG}=\frac{[エオ]}{[カ]}$である.
$\mathrm{AB}$と$\mathrm{DE}$の交点を$\mathrm{P}$とすると
\[ \frac{\mathrm{DP}}{\mathrm{EP}}=\frac{[キ]}{[ク]} \cdots\cdots① \]
である.
$\triangle \mathrm{ABC}$と$\triangle \mathrm{EDC}$において,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{D}$,$\mathrm{E}$は同一円周上にあるので$\angle \mathrm{CAB}=\angle \mathrm{CED}$で,$\angle \mathrm{C}$は共通であるから
\[ \mathrm{DE}=[ケ] \sqrt{[コ]} \cdots\cdots② \]
である.
$①$,$②$から,$\displaystyle \mathrm{EP}=\frac{[サ] \sqrt{[シ]}}{[ス]}$である.
鹿児島大学 国立 鹿児島大学 2015年 第1問
次の各問いに答えよ.

(1)$\mathrm{SATTUN}$という$6$文字を並びかえて得られる順列のうち,最初が子音文字になるものの総数を求めよ.
(2)半径$r$の円$\mathrm{O}^\prime$が半径$2r$の円$\mathrm{O}$に点$\mathrm{P}$で内接し,さらに円$\mathrm{O}^\prime$は円$\mathrm{O}$の弦$\mathrm{AB}$に点$\mathrm{Q}$で接している.線分$\mathrm{PQ}$の延長が円$\mathrm{O}$と交わる点を$\mathrm{M}$とする.$\angle \mathrm{PQB}={60}^\circ$のとき,線分$\mathrm{QM}$の長さを求めよ.
(3)$1$次不定方程式
\[ 37x+32y=1 \]
の整数解を$1$組求めよ.
スポンサーリンク

「延長」とは・・・

 まだこのタグの説明は執筆されていません。