タグ「座標」の検索結果

3ページ目:全2097問中21問~30問を表示)
名古屋工業大学 国立 名古屋工業大学 2016年 第4問
実数$t$に対し,複素数
\[ \left( \frac{1}{2}+\cos t+i \sin t \right)^2 \]
の実部を$f(t)$,虚部を$g(t)$とする.座標平面上に
\[ \text{曲線}C:x=f(t),\quad y=g(t) \quad (0 \leqq t \leqq \pi) \]
がある.

(1)$0 \leqq t \leqq \pi$のとき$f(t)$のとる値の範囲を求めよ.

(2)曲線$C$上の点$\displaystyle \mathrm{P} \left( f \left( \frac{\pi}{3} \right),\ g \left( \frac{\pi}{3} \right) \right)$における接線の方程式を求めよ.

(3)曲線$C$の$y \leqq 0$の範囲にある部分と$x$軸とで囲まれた図形の面積$S$を求めよ.
岡山大学 国立 岡山大学 2016年 第3問
ひとつのサイコロを$3$回振り,出た目を順に$u,\ v,\ w$とする.そして座標平面上の$2$点$\mathrm{A}(a_1,\ a_2)$,$\mathrm{B}(b_1,\ b_2)$を
\[ a_1=u,\quad a_2=0,\quad b_1=v \cos \frac{(w+2)\pi}{12},\quad b_2=v \sin \frac{(w+2)\pi}{12} \]
で定める.このとき以下の問いに答えよ.ただし$\mathrm{O}$は原点$(0,\ 0)$とする.

(1)$\triangle \mathrm{OAB}$が正三角形となる確率を求めよ.
(2)$\triangle \mathrm{OAB}$が大きさ$\displaystyle \frac{\pi}{3}$の内角をもつ直角三角形となる確率を求めよ.
岡山大学 国立 岡山大学 2016年 第3問
$a$は正の数とし,次の関数$y=f_a(x)$のグラフの変曲点を$\mathrm{P}$とする.
\[ f_a(x)=axe^{-\frac{x}{a}} \quad (x \geqq 0) \]
このとき以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)$a$が区間$1 \leqq a \leqq 2$全体を動くとき,点$\mathrm{P}$が描く曲線$C$の概形を図示せよ.
(3)$x \geqq 0$における曲線$y=f_1(x)$,$y=f_2(x)$と$(2)$の曲線$C$の$3$曲線で囲まれた部分の面積を求めよ.
九州大学 国立 九州大学 2016年 第1問
座標平面において,$x$軸上に$3$点$(0,\ 0)$,$(\alpha,\ 0)$,$(\beta,\ 0) (0<\alpha<\beta)$があり,曲線$C:y=x^3+ax^2+bx$が$x$軸とこの$3$点で交わっているものとする.ただし,$a,\ b$は実数である.このとき,以下の問いに答えよ.

(1)曲線$C$と$x$軸で囲まれた$2$つの部分の面積の和を$S$とする.$S$を$\alpha$と$\beta$の式で表せ.
(2)$\beta$の値を固定して,$0<\alpha<\beta$の範囲で$\alpha$を動かすとき,$S$を最小とする$\alpha$を$\beta$の式で表せ.
金沢大学 国立 金沢大学 2016年 第2問
平面上の$2$つの曲線
\[ C_1:x^2+(y-5)^2=16,\quad C_2:y=\frac{1}{4}x^2 \]
を考える.次の問いに答えよ.

(1)$C_1$と$C_2$の共有点の座標を求めよ.
(2)$C_1$と$C_2$を同一平面上に図示せよ.
(3)$C_1$と$C_2$で囲まれた図形の面積を求めよ.
九州工業大学 国立 九州工業大学 2016年 第1問
座標平面上の曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と点$\mathrm{P}(s,\ t) (s>0,\ t>0,\ st<1)$を考える.また,$u=st$とする.点$\mathrm{P}$を通る曲線$C$の$2$本の接線をそれぞれ$\ell_1,\ \ell_2$とし,これらの接線と曲線$C$との接点をそれぞれ$\displaystyle \mathrm{A} \left( a,\ \frac{1}{a} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{1}{b} \right)$とする.ただし,$a<b$とする.以下の問いに答えよ.

(1)$a,\ b$を$s,\ t$を用いて表せ.
(2)$2$点$\mathrm{E}(a,\ 0)$,$\mathrm{F}(b,\ 0)$を考える.台形$\mathrm{ABFE}$の面積を$u$を用いて表せ.
(3)$\triangle \mathrm{PAB}$の面積を$u$を用いて表せ.
(4)$(3)$で求めた$\triangle \mathrm{PAB}$の面積を$S(u)$とする.$S(u)$は区間$0<u<1$で減少することを示せ.
(5)点$\mathrm{P}$が$2$点$(3,\ 0)$,$(0,\ 1)$を結ぶ線分上の端点以外にあるものとする.このとき,$\triangle \mathrm{PAB}$の面積が最小となる点$\mathrm{P}$の座標を求めよ.また,そのときの面積を求めよ.
九州大学 国立 九州大学 2016年 第3問
袋の中に,赤玉が$15$個,青玉が$10$個,白玉が$5$個入っている.袋の中から玉を$1$個取り出し,取り出した玉の色に応じて,以下の操作で座標平面に置いたコインを動かすことを考える.


\mon[(操作)] コインが点$(x,\ y)$にあるものとする.赤玉を取り出したときにはコインを点$(x+1,\ y)$に移動,青玉を取り出したときには点$(x,\ y+1)$に移動,白玉を取り出したときには点$(x-1,\ y-1)$に移動し,取り出した球は袋に戻す.

最初に原点$(0,\ 0)$にコインを置き,この操作を繰り返して行う.指定した回数だけ操作を繰り返した後,コインが置かれている点を到達点と呼ぶことにする.このとき,以下の問いに答えよ.

(1)操作を$n$回繰り返したとき,白玉を$1$度だけ取り出したとする.このとき,到達点となり得る点をすべて求めよ.
(2)操作を$n$回繰り返したとき,到達点となり得る点の個数を求めよ.
(3)座標平面上の$4$点$(1,\ 1)$,$(-1,\ 1)$,$(-1,\ -1)$,$(1,\ -1)$を頂点とする正方形$D$を考える.操作を$n$回繰り返したとき,到達点が$D$の内部または辺上にある確率を$P_n$とする.$P_3$を求めよ.
(4)自然数$N$に対して$P_{3N}$を求めよ.
金沢大学 国立 金沢大学 2016年 第1問
座標空間内に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 3,\ 0)$,$\mathrm{B}(0,\ 6,\ 0)$をとり,さらに$1<a<3$を満たす定数$a$に対して点$\mathrm{P}(t,\ ta,\ ta)$をとる.ただし,$t$は$t>0$の範囲を動くものとする.次の問いに答えよ.

(1)点$\mathrm{P}$から$xy$平面に垂線$\mathrm{PH}$を下ろす.点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{H}$が線分$\mathrm{AB}$上にあるときの$t$の値を求め,そのときの点$\mathrm{H}$の座標を$a$を用いて表せ.



以下,点$\mathrm{H}$は線分$\mathrm{AB}$上にあるとする.


\mon[$(3)$] 点$\mathrm{M}$を線分$\mathrm{AB}$の中点とする.$\mathrm{AH}:\mathrm{HM}$の比の値$\displaystyle \frac{\mathrm{AH}}{\mathrm{HM}}$を求めよ.
\mon[$(4)$] 四面体$\mathrm{OPMH}$の体積が$2$となるような$a$の値を求めよ.
金沢大学 国立 金沢大学 2016年 第2問
曲線$C:x^2+4y^2=4$上を動く点$\mathrm{P}$と,$C$上の定点$\mathrm{Q}(2,\ 0)$,$\mathrm{R}(0,\ 1)$がある.次の問いに答えよ.

(1)$\triangle \mathrm{PQR}$の面積の最大値と,そのときの$\mathrm{P}$の座標を求めよ.
(2)$(1)$で求めた点$\mathrm{P}$に対して直線$\mathrm{PQ}$を考える.曲線$C$によって囲まれた図形を直線$\mathrm{PQ}$で$2$つに分けたとき,直線$\mathrm{PQ}$の下方にある部分の面積を求めよ.
埼玉大学 国立 埼玉大学 2016年 第3問
次の問いに答えよ.

(1)$\displaystyle f(x)=\frac{e^x}{x^2+3x+1}$とする.$x>0$の範囲で$f(x)$が最小になる$x$の値と,そのときの$f(x)$の値を求めよ.
(2)$a>0$とする.曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と$2$つの直線$\ell_1:y=2e^ax$,$\ell_2:y=(a^2+3a+1)x$を考える.$C$と$\ell_1$と$\ell_2$で囲まれる部分を$D$とする.

\mon[(ア)] $C$と$\ell_1$の交点,および,$C$と$\ell_2$の交点の座標を求めよ.
\mon[(イ)] $(1)$を用いて$2e^a>a^2+3a+1$であることを示せ.ただし,$e=2.7182 \cdots$であることは用いてよい.
\mon[(ウ)] $D$の面積を$a$を用いて表せ.
\mon[(エ)] $D$の面積を最小にする$a$の値と,そのときの$D$の面積を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。