タグ「対数」の検索結果

9ページ目:全1047問中81問~90問を表示)
福井大学 国立 福井大学 2016年 第4問
表の出る確率が$r$,裏の出る確率が$1-r$であるコインがある.このコインを繰り返し投げ,表の出た回数と裏の出た回数の差の絶対値が$2$になったときにコイン投げを終了する.ちょうど$2n$回で終了する確率を$p_n$とし,$2n$回以下で終了する確率を$q_n$とする.ただし,$n$は正の整数とする.このとき,以下の問いに答えよ.

(1)$p_n$を求めよ.
(2)無限級数$\displaystyle \sum_{n=1}^\infty np_n$の和を求めよ.ただし,$0 \leqq s<1$に対して$\displaystyle \lim_{n \to \infty}ns^n=0$であることを用いてもよい.
(3)$\displaystyle r=\frac{1}{4}$のとき,$q_n \geqq 0.999$となる最小の$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
山口東京理科大学 私立 山口東京理科大学 2016年 第3問
次の式を展開したとき,$a^{5-k}b^k$の項の係数を$C_k$とする.ただし,$k=0,\ 1,\ \cdots,\ 5$とする.

${(5a+12b)}^5$

(1)係数$C_2$に対して,
\[ \log_{10}C_2=[タ] \log_{10}2+[チ] \log_{10}3+[ツ] \]
が成り立つ.
(2)$2$つの係数$C_3,\ C_4$に対して,
\[ \log_{10}C_4-\log_{10}C_3=[テ] \log_{10}2+[ト] \log_{10}3-[ナ] \]
が成り立つ.
同志社大学 私立 同志社大学 2016年 第2問
次の問いに答えよ.

(1)関数$f(u)=\log (\sqrt{u}-1)-\log (\sqrt{u}+1)$の導関数$f^\prime(u)$を求めよ.
(2)関数$F(x)=\log (\sqrt{e^{2x}+1}-1)-\log (\sqrt{e^{2x}+1}+1)$の導関数$F^\prime(x)$を求めよ.
(3)等式$\displaystyle \sqrt{e^{2x}+1}=\frac{e^{2x}}{\sqrt{e^{2x}+1}}+\frac{1}{\sqrt{e^{2x}+1}}$を用いて,不定積分$\displaystyle \int \sqrt{e^{2x}+1} \, dx$を求めよ.
(4)曲線$\displaystyle y=e^x \left( \frac{1}{2} \log 8 \leqq x \leqq \frac{1}{2} \log 24 \right)$の長さを求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$t$を正の実数とし,$x$の$2$次方程式
\[ x^2-2 \{(\log_2 t)^2+1\}x+6(\log_2 t)^2+1=0 \]
を考える.

(1)上の$2$次方程式の実数解が存在しない$t$の範囲を求めよ.

上の方程式が実数解を持つ$t$に対して,実数解がただ$1$つのときはその値を$f(t)$と定め,実数解が$2$つあるときは小さいほうの値を$f(t)$と定める.

(2)上の$2$次方程式の実数解がただ$1$つ存在する$t$の集合を$A$とする.$t \in A$のとき$f(t)$の最小値と最大値を求めよ.
(3)$t$が$\displaystyle 1 \leqq \log_4 t \leqq \frac{3}{2}$を満たす範囲を動くとき,$f(t)$の最小値を求めよ.
早稲田大学 私立 早稲田大学 2016年 第3問
次の不等式
\[ 1+\log_{\sqrt{x}} (n^2)<\log_n \sqrt{x}<\frac{1}{2}(1+\log_{\sqrt{n}} 3) \quad \cdots \quad (*) \]
を満たす自然数$n$と実数$x$について,以下の問に答えよ.

(1)次の空欄にあてはまる数を記入せよ.
$t=\log_n x$とおく.このとき,$\displaystyle 1+\log_{\sqrt{x}} (n^2)=1+\frac{[ア]}{t}$,$\log_n \sqrt{x}=[イ] \times t$である.したがって,不等式$1+\log_{\sqrt{x}}(n^2)<\log_n \sqrt{x}$が満たされることは,
$[ウ]<t<[エ]$または$t>[オ]$であることと同値である.
(2)$x$も自然数であるとき,不等式$(*)$を満たす組$(n,\ x)$をすべて求めよ.
同志社大学 私立 同志社大学 2016年 第3問
$a$を正の実数とし,数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が漸化式
\[ a_1=a,\quad \log_2 a_{n+1}=-|\log_2 a_n|+2 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められているとき,次の問いに答えよ.

(1)$x \geqq 1$のとき,$\log_2 y=-|\log_2 x|+2$を満たす$y$を$x$を用いて表せ.
(2)座標平面上で,方程式$\log_2 y=-|\log_2 x|+2 (x>0)$の表す図形を描け.
(3)$x>0$において,方程式$\log_2 x=-|\log_2 x|+2$を満たす$x$の値を求めよ.
(4)$n$を正の整数とし,$1<a<2$とする.数列$\{a_n\}$の第$n$項を求めよ.
(5)$n$を正の整数とする.$2^{2015}<a<2^{2016}$のとき,数列$\{a_n\}$の第$n$項を求めよ.
南山大学 私立 南山大学 2016年 第1問
$[ ]$の中に答を入れよ.

(1)$2$つの関数$f(x)=|x|$,$g(x)=ax+a^2+3a+1$がある.$g(0)>f(0)$となるとき,$a$のとりうる値の範囲は$[ア]$である.また,$y=f(x)$のグラフと$y=g(x)$のグラフが$2$つの交点をもつとき,$a$のとりうる値の範囲は$[イ]$である.
(2)次のデータは,$5$個の乾電池について,ある実験で用いたときの持続時間$x$を調べたものである.
\[ 103, 93, 98, 88, 108 \text{(時間)} \]
$x$の平均値は$[ウ]$時間であり,$x$の分散を求めると$[エ]$である.
(3)$a_1=99$,$a_{n+1}=2a_n-100 (n=1,\ 2,\ \cdots)$で定義される数列$\{a_n\}$について,一般項$a_n$を$n$の式で表すと$a_n=[オ]$であり,$a_n<0$を満たす最小の自然数$n$の値を求めると$n=[カ]$である.
(4)$x$と$y$は$0<x<y$,$\log_2 x+2 \log_4 y=1$,$(\log_2 x)(\log_4 y)=-6$を満たす.$s=\log_2 x$,$t=\log_2 y$とおき$s+t$と$st$の値を求めると$(s+t,\ st)=[キ]$である.また,$x$と$y$の値を求めると$(x,\ y)=[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
次の$[ ]$にあてはまる最も適当な数または式を記入しなさい.

(1)円$x^2+y^2-6x+12y+25=0$を$C_1$とし,中心が原点で,円$C_1$に外接する円を$C_2$とする.このとき円$C_2$の半径は$[ケ]$である.また$2$つの円$C_1$,$C_2$の共有点の座標は$[コ]$である.
(2)不等式$3^{2x}+1<3^{x+2}+3^{x-2}$を解くと,$[サ]<x<[シ]$である.
(3)自然数$n$に対して$m \leqq \log_2 n<m+1$を満たす整数$m$を$a_n$で表すことにする.このとき$a_{2016}=[ス]$である.また,自然数$k$に対して$a_n=k$を満たす$n$は全部で$[セ]$個あり,そのような$n$のうちで最大のものは$n=[ソ]$である.さらに$\displaystyle \sum_{n=1}^{2016}a_n=[タ]$である.
(ヒント:$2^{10}=1024$)
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[ク]$に当てはまる数または式を記入せよ.

(1)赤と青の$2$色を両方とも必ず用いて,正四面体の各面を塗り分ける場合の数は$[ア]$通りである.ただし,回転して一致する場合は同じものとみなす.
(2)$n$を$1 \leqq n \leqq 16$を満たす整数とする.$5n$を$17$で割ったときの余りが$1$となるとき,$n=[イ]$である.
(3)$A=\log_4 120-\log_4 6-\log_4 10$を計算すると,$A=[ウ]$である.
(4)$k$を実数とし,$2$次方程式$x^2+kx-1=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-(k+4)x+1=0$が$2$つの解$\alpha^2$と$\beta^2$を持つとき,$k$の値をすべて求めると,$k=[エ]$である.
(5)$a,\ b$を実数とする.$x$の$2$次式$f(x)$が,$x^2 f^\prime(x)-f(x)=x^3+ax^2+bx$を満たすとき,$a+b=[オ]$である.
(6)三角形$\mathrm{ABC}$の辺の長さがそれぞれ$\mathrm{AB}=2$,$\mathrm{BC}=3$,$\mathrm{CA}=4$のとき,三角形$\mathrm{ABC}$に内接する円の半径は$[カ]$である.
(7)$\displaystyle 0 \leqq \theta<\frac{\pi}{2}$において,$\tan \theta=2$が成り立つとき,$\cos \theta=[キ]$である.
(8)曲線$y=x^3-x^2+x+1$と曲線$y=x^3-2x^2+5x-2$で囲まれた図形の面積は$[ク]$である.
久留米大学 私立 久留米大学 2016年 第3問
次の計算をしなさい.対数は自然対数とする.
\[ \int_0^3 \frac{x^2}{\sqrt{1+x}} \, dx=[$7$],\qquad \int_1^{\sqrt{3}} 2x \log (1+x^2) \, dx=[$8$] \]
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。