タグ「対数」の検索結果

16ページ目:全1047問中151問~160問を表示)
横浜市立大学 公立 横浜市立大学 2016年 第3問
関数$y=\tan x$は,区間$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$で単調増加である.したがって,この区間で逆関数を作ることが出来る.それを
\[ y=\phi(x) \quad (-\infty<x<\infty) \]
と書く(この逆関数を$\mathrm{Arctan} \ x$と書く参考書もある).正確を期すために,$\displaystyle -\frac{\pi}{2}<\phi(x)<\frac{\pi}{2}$としておく.以下の問いに答えよ.ただし,「$-\infty<x<\infty$」は「$x$は実数」という意味である.

(1)関数$f(x)$を
\[ f(x)=\frac{1}{4 \sqrt{2}} \log \frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}+\frac{1}{2 \sqrt{2}} \left\{ \phi(\sqrt{2}x+1)+\phi(\sqrt{2}x-1) \right\} \]
とおく.$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)積分
\[ \int_0^1 \frac{1}{x^4+1} \, dx \]
を求めたい.正確な値は求められないので,以下のようにする.即ち,関数$G(x)$で
\[ \int_0^1 \frac{1}{x^4+1} \, dx=G(\sqrt{2}+1) \]
となる関数を求めよ.
(3)積分の等式
\[ \int_0^\pi \frac{x \sin x}{1+\cos^4 x} \, dx=\pi \int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\cos^4 x} \, dx \]
を示せ.
(4)積分
\[ \int_0^{\pi} \frac{x \sin x}{1+\cos^4 x} \, dx \]
を求めよ.
広島市立大学 公立 広島市立大学 2016年 第3問
関数$f(x)=x-\log x (x>0)$について,以下の問いに答えよ.

(1)関数$f(x)$の増減,極値と,曲線$y=f(x)$の凹凸を調べよ.
(2)曲線$y=f(x)$上の点$(e,\ f(e))$における接線を$\ell$とする.

(i) $\ell$の方程式を求めよ.
(ii) 曲線$y=f(x)$,接線$\ell$および直線$x=1$で囲まれた部分の面積を求めよ.

(3)曲線$y=f(x)$,曲線$y=\log x$,直線$x=1$および直線$x=e$で囲まれた部分を$x$軸の周りに$1$回転してできる回転体の体積を求めよ.
富山県立大学 公立 富山県立大学 2016年 第3問
次の問いに答えよ.

(1)$x>0$,$y>0$のとき,不等式$\displaystyle \frac{x+y}{2} \geqq \sqrt{xy}$を証明せよ.また,等号が成り立つときを調べよ.

(2)$a>0$,$b>0$,$c>0$で,$a \neq 1$,$c \neq 1$のとき,等式$\displaystyle \log_a b=\frac{\log_c b}{\log_c a}$を証明せよ.

(3)$p>1$,$q>1$のとき,不等式$\log_p q+\log_q p \geqq 2$を証明せよ.また,等号が成り立つときを調べよ.
会津大学 公立 会津大学 2016年 第1問
次の問いに答えよ.

(1)次の計算をせよ.ただし,$i$は虚数単位である.


(i) $\displaystyle \int_1^e x^9 \log x \, dx=[イ]$

(ii) $\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \cos \left( \frac{k\pi}{2n} \right)=[ロ]$

(iii) $(-1+i)^{21}=[ハ]$


(2)$1333$と$1147$の最大公約数は$[ニ]$である.
(3)方程式$8^x+4^x=9 \times 2^x+9$の解は$x=[ホ]$である.
(4)$0 \leqq x \leqq \pi$において関数$y=2 \sin^2 x+2 \cos x+1$は$x=[ヘ]$のとき,最大値$[ト]$をとる.
(5)$\triangle \mathrm{ABC}$において,$|\overrightarrow{\mathrm{AC|}}=6$,$|\overrightarrow{\mathrm{BC|}}=\sqrt{13}$,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=24$であるとき,$|\overrightarrow{\mathrm{AB|}}=[チ]$であり,$\triangle \mathrm{ABC}$の面積は$[リ]$である.
九州歯科大学 公立 九州歯科大学 2016年 第1問
次の問いに答えよ.

(1)$5 \sin \theta \cos \theta=2$のとき,$\displaystyle A=\tan \theta+\frac{1}{\tan \theta}$,$B=(\sin \theta)^4+(\cos \theta)^4$,$C=(\sin \theta)^8+(\cos \theta)^8$の値を求めよ.
(2)等比数列$\{a_n\}$の初項を$a_1=\alpha$,公比を$r$とする.自然数$n$に対して,$b_n=\log_3 a_n$とおく.数列$\{b_n\}$が初項$b_1=4$,公差$d=-2$の等差数列となるとき,$\alpha$と$r$の値を求めよ.また,$\displaystyle \beta=8 \sum_{n=1}^{\infty} a_n$の値を求めよ.ただし,$\alpha>0$,$r>0$とする.
(3)定積分$\displaystyle I=\int_{-2}^3 (3 \sqrt{x^4-6x^2+9}-4x) \, dx$の値を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2016年 第13問
$\displaystyle \int_1^2 (\log x)^3 \, dx$を求めよ.
兵庫県立大学 公立 兵庫県立大学 2016年 第1問
$a>0$とする.$x>0$で定義された関数$y=x^2+ax-3a^2 \log x$のグラフが$x$軸と共有点をもつような$a$の範囲を求めよ.
滋賀県立大学 公立 滋賀県立大学 2016年 第2問
$n,\ p,\ q (p \leqq q)$を自然数とするとき,次の不等式が成り立つことを示せ.


(1)$\displaystyle \left( 1+\frac{1}{p} \right)^n \geqq 1+\frac{n}{p}$

(2)$\displaystyle \sum_{p=1}^q \log_{10} \left( 1+\frac{n}{p} \right) \leqq n \log_{10}(1+q)$
北九州市立大学 公立 北九州市立大学 2016年 第2問
以下の問いの空欄$[サ]$~$[ニ]$に入れるのに適する数値,式を答えよ.

(1)$2$次方程式$2x^2-3x+2=0$の解を$\alpha,\ \beta$とするとき,$\alpha^2,\ \beta^2$を解とする$2$次方程式の$1$つは$[サ]$である.
(2)$3$点$\mathrm{A}(-1,\ 7)$,$\mathrm{B}(2,\ 1)$,$\mathrm{C}(3,\ 4)$を通る円の方程式は$[シ]$である.また,この円と直線$y=x+k$が接するとき$k=[ス]$,$[セ]$である.
(3)関数$y=\cos 2x+2 \sin x (0 \leqq x<2\pi)$の最大値,最小値と,そのときの$x$の値を求めると,$x=[ソ]$,$[タ]$のとき最大値$y=[チ]$をとり,$x=[ツ]$のとき最小値$y=[テ]$をとる.
(4)不等式$\log_2(x+5)+\log_2(x-2)<3$を満たす$x$の範囲は$[ト]$である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=2n^2-n (n=1,\ 2,\ 3,\ \cdots)$と表されるとき,この数列の一般項$a_n$は$[ナ]$であり,$a_1a_2+a_2a_3+a_3a_4+\cdots+a_na_{n+1}$を$n$の式で表すと$[ニ]$である.
北九州市立大学 公立 北九州市立大学 2016年 第2問
座標平面上の原点$\mathrm{O}$と$2$次関数$f(x)=-x^2+ax$を考える.ただし,$a$は正の定数である.以下の問題に答えよ.

(1)$y_1=-x^2+x$,$y_2=-x^2+2x$とする.$\displaystyle \frac{y_2}{y_1}>0$となる$x$の値の範囲を求めよ.また,次の式を満たす$x$の値を求めよ.
\[ \log_2 \left( \frac{y_2}{y_1} \right)=2 \]
(2)積分$\displaystyle \int_0^1 |f(x)| \, dx$の値を$a$を用いて表せ.また,この値が最小となるときの$a$の値を求めよ.
(3)$\displaystyle a=\frac{5}{4}$とする.関数$y=f(x)$のグラフで$x \geqq 0$を満たす部分を曲線$C$とする.曲線$C$上の$2$点を$\mathrm{P}(p,\ f(p))$,$\mathrm{Q}(p+1,\ f(p+1))$とし,点$\mathrm{P}$,$\mathrm{Q}$から$x$軸へ下ろした各々の垂線を$\mathrm{PP}^\prime$,$\mathrm{QQ}^\prime$とする.ただし,$p$は$\displaystyle 0<p<\frac{1}{4}$または$\displaystyle \frac{1}{4}<p<1$を満たす.点$\mathrm{P}$,$\mathrm{P}^\prime$,$\mathrm{Q}$,$\mathrm{Q}^\prime$を結ぶ図形が平行四辺形となるとき,$p$の値を求めよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。