タグ「対数」の検索結果

105ページ目:全1047問中1041問~1050問を表示)
会津大学 公立 会津大学 2010年 第1問
$(1)$の問いに答えよ.また,$(2)$から$(6)$までの空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int_1^e x \log x \, dx=[ ]$
(ii) $\displaystyle \int \sin^3 x \cos x \, dx=[ ]$

(2)$y=\sqrt[5]{2x-1}$のとき,$\displaystyle \frac{dy}{dx}=[ ]$である.
(3)方程式$2^{x^2-1}4^{x+2}=8^{x+3}$の解は$x=[ ]$である.
(4)方程式$\log_3(x-5)=2-\log_3(x+3)$の解は$x=[ ]$である.
(5)2直線$y=3x$と$\displaystyle y=\frac{x}{3}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(6)座標平面上で次の連立不等式
\[ \left\{
\begin{array}{l}
|x|+|y| \leqq 2 \\
x^2+y^2 \geqq 2
\end{array}
\right. \]
の表す領域の面積は[ ]である.
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第6問
座標平面上の曲線$y=e^x-1$を$C$とする.曲線$C$と2直線$y=0,\ x=t$で囲まれる部分の面積を$S_1$とし,曲線$C$と2直線$y=2,\ x=t$で囲まれる部分の面積を$S_2$とする.ただし,$0<t<\log 3$とする.このとき,以下の問いに答えよ.

(1)$S_1=S_2$となるときの$t$の値を求めよ.
(2)$S_1+S_2$が最小となるときの$t$の値を求めよ.
九州歯科大学 公立 九州歯科大学 2010年 第1問
次の問いに答えよ.

(1)$(\log_5 7+\log_{25}7) \log_7 x=6$をみたす$x$の値を求めよ.
(2)$2$次方程式$x^2+8x+c=0$の$2$つの解を$\alpha,\ \beta$とする.$\displaystyle \sum_{k=1}^\infty (\alpha-\beta)^{2k}=3$のとき,定数$c$の値を求めよ.
(3)袋の中に青球$5$個,緑球$4$個,黄球$2$個,赤球$2$個,白球$2$個,黒球$1$個が入っている.この袋にさらに$n$個の赤球と$5-n$個の白球を加える.この袋から同時に$2$個の球を取り出すとき,取り出された$2$個の球が同じ色でない確率が$\displaystyle \frac{5}{6}$となる$n$の値を求めよ.
富山県立大学 公立 富山県立大学 2010年 第5問
方程式$\displaystyle \log (2x)-\log (4x) \log \left( \frac{4}{x} \right)=0$について,次の問いに答えよ.ただし,対数は常用対数である.

(1)この方程式が異なる$2$つの実数解をもつことを示せ.
(2)$\alpha,\ \beta$は,この方程式の異なる$2$つの実数解で,$\alpha<\beta$とする.$\alpha,\ \beta,\ 1,\ 2$を小さい順に並べよ.
岐阜薬科大学 公立 岐阜薬科大学 2010年 第3問
$a$は$a \leqq 1$を満たす実数の定数とする.$x \geqq 1-a$で連続な関数$f(x)$が
\[ \int_{1-a}^x f(t)(x-t) \, dt=24(x+a)^2 \log (x+a)-x^4-24x \quad (x \geqq 1-a) \]
を満たすとき,次の問いに答えよ.

(1)$a$の値と$f(x)$を求めよ.
(2)$x \geqq 1-a$で$f(x)$の増減をしらべ,極値を求めよ.
横浜市立大学 公立 横浜市立大学 2010年 第1問
以下の問いに答えよ.

(1)$4$次方程式
\[ ax^4+bx^3+cx^2+dx+e=0 \]
を考える.ただし,$a,\ b,\ c,\ d,\ e$は定数で,$a \neq 0$とする.$x=t+\alpha$($\alpha$は定数)とおいて,$t$に関する$4$次方程式
\[ t^4+Ct^2+Dt+E=0 \]
の形にする.このとき$D=0$となる条件式を$a,\ b,\ c,\ d$を用いて表せ.
(2)$R$を正の実数とする.極限値
\[ \lim_{R \to \infty} \int_1^{R^2} \frac{e^{-\sqrt{x}}}{2} \, dx \]
を求めよ.
(3)地震のエネルギー$(E)$とマグニチュード$(M)$の間には
\[ \log_{10}E=4.8+1.5M \]
の関係がある(単位系は省略).$2009$年$8$月に起きた駿河湾地震のマグニチュードは$6.5$であり,気象庁によればこの地震は予想されている東海地震とは異なる.東海地震のマグニチュードは$8$程度と想定されており,それを$8.0$と仮定してこの二つの地震のエネルギーの比を求めたい.駿河湾地震のエネルギーを$E_S$,東海地震のそれを$E_T$とおき
\[ \frac{E_T}{E_S} \]
を求めよ.簡単のために近似値$10^3 \fallingdotseq 2^{10}$,$\sqrt{2} \fallingdotseq 1.41$を用いて計算し,小数点以下は切り捨てること.
横浜市立大学 公立 横浜市立大学 2010年 第3問
$n$は自然数とする.$1$以上の実数$a,\ d$と正の実数$b,\ c$を成分とする行列
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \]
に対し,$n$個の積$A^n$を
\[ A^n=\left( \begin{array}{cc}
a_n & b_n \\
c_n & d_n
\end{array} \right),\quad A^1=A \]
とおく.また,$0<v \leqq u$をみたす実数$u,\ v$と正の実数$\lambda$に対して,$A$は等式
\[ A \left( \begin{array}{c}
u \\
v
\end{array} \right)=\lambda \left( \begin{array}{c}
u \\
v
\end{array} \right) \]
をみたすとする.以下の問いに答えよ.

(1)不等式
\[ \left( 1+\frac{v}{u} \right) \lambda^n \leqq a_n+b_n+c_n+d_n \leqq \left( 1+\frac{u}{v} \right) \lambda^n \]
を示せ.
(2)$M$を$\displaystyle 1+\frac{1}{b}$と$\displaystyle 1+\frac{1}{c}$の大きい方($b=c$の場合はどちらでも良い)とするとき,不等式
\[ a_n+b_n+c_n+d_n<M(a_{n+1}+d_{n+1}) \]
を示せ.
(3)数列
\[ \left\{ \frac{1}{n} \log (a_n+d_n) \right\} \]
の極限値を求めよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。