タグ「存在」の検索結果

3ページ目:全303問中21問~30問を表示)
富山大学 国立 富山大学 2016年 第3問
曲線$C_1:y=x^3-x$と曲線$C_2:y=(x-\alpha)^3-(x-\alpha)+\beta$が,ちょうど$2$つの点を共有しているとする.ただし,$\alpha,\ \beta$は実数である.このとき,次の問いに答えよ.

(1)$\alpha,\ \beta$が満たす条件を求めよ.
(2)$\alpha,\ \beta$が$(1)$の条件を満たすとき,点$(\alpha,\ \beta)$が存在する領域を図示せよ.
浜松医科大学 国立 浜松医科大学 2016年 第2問
$r$を$1<r<3$を満たす実数,$k$を$|r-2|<k<1$を満たす実数とする.また,次の関数$f(x)$を考える.
\[ f(x)=rx(1-x) \]
以下の問いに答えよ.

(1)$f(x)=x$を満たす$x$を求めよ.



以下の問題では,$(1)$で求めた$x$のうちで正のものを$x_r$とする.


\mon[$(2)$] 次の条件

$|x-x_r|<a$を満たすすべての$x$について$|f^\prime(x)|<k$

が成り立つような正の実数$a$が存在することを証明せよ.
\mon[$(3)$] $(2)$の$a$に対して,数列$\{x_n\}$を
\[ |x_1-x_r|<a,\quad x_{n+1}=f(x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.

(i) すべての自然数$n$について$|x_n-x_r|<a$であることを証明せよ.
(ii) $\displaystyle \lim_{n \to \infty}x_n=x_r$を証明せよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$t$を正の実数とし,$x$の$2$次方程式
\[ x^2-2 \{(\log_2 t)^2+1\}x+6(\log_2 t)^2+1=0 \]
を考える.

(1)上の$2$次方程式の実数解が存在しない$t$の範囲を求めよ.

上の方程式が実数解を持つ$t$に対して,実数解がただ$1$つのときはその値を$f(t)$と定め,実数解が$2$つあるときは小さいほうの値を$f(t)$と定める.

(2)上の$2$次方程式の実数解がただ$1$つ存在する$t$の集合を$A$とする.$t \in A$のとき$f(t)$の最小値と最大値を求めよ.
(3)$t$が$\displaystyle 1 \leqq \log_4 t \leqq \frac{3}{2}$を満たす範囲を動くとき,$f(t)$の最小値を求めよ.
早稲田大学 私立 早稲田大学 2016年 第1問
正の整数$m,\ n$に対して$f(m,\ n)$が次の等式を満たすように定められている.
\[ \left\{ \begin{array}{l}
f(1,\ 1)=1,\quad f(2,\ 2)=6,\quad f(3,\ 3)=20 \\
f(m,\ n)=2f(m-1,\ n) \quad (m \geqq 2) \phantom{\frac{[ ]}{2}} \\
f(m,\ n)+3f(m,\ n-2)=3f(m,\ n-1)+f(m,\ n-3) \quad (n \geqq 4) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
次の問に答えよ.

(1)$f(m,\ 1)$および$f(1,\ n)$をそれぞれ$m,\ n$の式で表せ.
(2)$f(6,\ 32)$の値を求めよ.
(3)任意の正の整数$l$に対して,$f(m,\ n)=l$を満たす正の整数$m,\ n$が存在することを示せ.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$i$を虚数単位とする.次の事実がある.
\begin{waku}[事実$\mathrm{F}$]
$a,\ b$を互いに素な正の整数とする.このとき,
\[ \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k=\cos \frac{2}{b} \pi+i \sin \frac{2}{b} \pi \]
となる整数$k$が存在する.
\end{waku}

(1)等式
\[ \left( \cos \frac{4}{5} \pi+i \sin \frac{4}{5} \pi \right)^k=\cos \frac{2}{5} \pi+i \sin \frac{2}{5} \pi \]
を満たす最小の正の整数$k$は$[ツ]$である.
(2)$a,\ b$を互いに素な正の整数とし,集合$P$を
\[ P=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k \text{と表される複素数} \right\} \]
で定める.事実$\mathrm{F}$を考慮すると,集合$P$の要素の個数$n(P)$は$[テ]$である.
(3)事実$\mathrm{F}$を証明しなさい.
(4)$a_1,\ b_1$を互いに素な正の整数とし,$a_2,\ b_2$も互いに素な正の整数とする.集合$Q_1$と$Q_2$を

$\displaystyle Q_1=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_1}{b_1} \pi+i \sin \frac{2a_1}{b_1} \pi \right)^k \text{と表される複素数} \right\}$

$\displaystyle Q_2=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_2}{b_2} \pi+i \sin \frac{2a_2}{b_2} \pi \right)^k \text{と表される複素数} \right\}$

で定め,集合$R$を
\[ R=\{z \;\bigg|\; \text{$z$は集合$Q_1$の要素と集合$Q_2$の要素の積で表される複素数}\} \]
で定める.$b_1$と$b_2$が互いに素ならば,集合$R$の要素の個数$n(R)$は$[ト]$である.$b_1$と$b_2$が互いに素でないとき,それらの最大公約数を$d$とすれば,集合$R$の要素の個数$n(R)$は$[ナ]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
以下の問いに答えよ.

(1)$k$を自然数とする.数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{S_n\}$が初項$k$,公比$k$の等比数列であるとする.
\begin{itemize}
$k=3$の場合,$a_n \geqq 5000$を満たすのは$n \geqq [$1$]$のときである.
$a_n$が$100$の倍数となる$n$が存在するような$10$以下の自然数$k$は$[$2$]$つあり,このとき,$a_n$が$100$の倍数となるのは$n \geqq [$3$]$のときである.
\end{itemize}
(2)$\alpha$を$0 \leqq \alpha<2\pi$を満たす定数とする.実数$t$が$0 \leqq t \leqq 2\pi$の範囲で変化するとき,座標平面上の点$\mathrm{P}(\sin t,\ \sin (t+\alpha))$の軌跡を$\mathrm{T}$とする.
\begin{itemize}
$\mathrm{T}$が線分となるような$\alpha$の値をすべて記せ.
$\mathrm{T}$が原点を中心とする円となるような$\alpha$の値をすべて記せ.
\end{itemize}
早稲田大学 私立 早稲田大学 2016年 第2問
次の問に答えよ.

(1)負でない実数の数列$a_1,\ a_2,\ \cdots$は,すべての$n=1,\ 2,\ \cdots$に対して
\[ a_{n+1}=\sqrt{a_n} \]
を満たしているとする.このとき,次の各問いに答えよ.

(i) $a_1=256$であるとき,$a_4$は$[コ]$であり,$2^{-\frac{1}{100}} \leqq a_n \leqq 2^{\frac{1}{100}}$を満たす最小の自然数$n$は$[サ]$である.
(ii) $\displaystyle a_1=\frac{1}{256}$であるとき,$a_4$は$[シ]$であり,$2^{-\frac{1}{100}} \leqq a_n \leqq 2^{\frac{1}{100}}$を満たす最小の自然数$n$は$[ス]$である.
(iii) $a_1=a_2=a_3=\cdots$となるような初項$a_1$は$[セ]$個存在する.

(2)$1$つのサイコロを何回か投げる場合を考える.$4$回投げたとき,$1$または$2$の目が奇数回出る確率は$[ソ]$である.また,$n$回投げたときに$1$または$2$の目が奇数回出る確率を$p_n$とするとき,$p_n$を$n$の式で表すと$[タ]$である.
早稲田大学 私立 早稲田大学 2016年 第1問
次の各問の解答を記入せよ.

(1)正の整数$a$に対して,ある整数$b$が存在して$63a-32b=1$を満たすとする.$a$はこのような性質を満たす正の整数のうちで最小のものであるとする.このとき$ab$の値を求めよ.
(2)$3$個のさいころを同時に投げたとき,出た目すべての積が$4$の倍数となる確率を求めよ.
(3)$a_1=a_2=1$,$a_{n+2}=a_n+a_{n+1} (n=1,\ 2,\ 3,\ \cdots)$とし,
\[ b_n=\sum_{k=1}^n a_k \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおく.$b_1$から$b_{2016}$までの$2016$個の整数のうち$3$の倍数であるものは全部で何個あるか.
(4)$y=f(x)$は$0 \leqq x \leqq 1$で定義された連続な関数で$f(0)=0$,$f(1)=1$であり,$0 \leqq x_1<x_2 \leqq 1$であるすべての$x_1,\ x_2$に対して$f(x_1)<f(x_2)$を満たしているとする.$x=g(y)$を$0 \leqq y \leqq 1$で定義された$f$の逆関数とする.
\[ 5 \int_0^1 f(x) \, dx=2 \int_0^1 g(y) \, dy \]
が成立しているとき$\displaystyle \int_0^1 f(x) \, dx$の値を求めよ.
津田塾大学 私立 津田塾大学 2016年 第3問
$a$を正の実数とする.$x \geqq 0$のとき,次の不等式が成り立つとする.
\[ \frac{x^3}{3}+a \geqq x \]
また,等号が成り立つ正の実数$x$が存在するとする.

(1)$a$の値を求めよ.
(2)次の連立不等式を満たす整数の組$(x,\ y)$をすべて求めよ.
\[ x \leqq y,\quad y \leqq \frac{x^3}{3}+a,\quad \frac{x^3}{3}+a \leqq 1 \]
津田塾大学 私立 津田塾大学 2016年 第4問
複素数平面において,円$|z|=1$を$C$とする.

(1)$\alpha=a+bi$を$C$上の点とする.複素数$w=x+yi$が$\alpha$を通る$C$の接線上にあるための条件を実数$a,\ b,\ x,\ y$を用いて表せ.
(2)次の条件を満たす$C$上の点$\alpha$の描く図形を図示せよ.
\[ \text{条件:} \quad \left\{ \begin{array}{l}
\alpha \overline{w}+\overline{\alpha}w=2 \\
|w-4|=1
\end{array} \right. \text{を同時に満たす複素数$w$が存在する.} \]
スポンサーリンク

「存在」とは・・・

 まだこのタグの説明は執筆されていません。