タグ「回転体の体積」の検索結果

2ページ目:全273問中11問~20問を表示)
信州大学 国立 信州大学 2016年 第2問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の曲線$C:y=e^x$に対し,次の問に答えよ.

(1)原点から曲線$C$に引いた接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および$y$軸で囲まれた図形$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(4)部分積分法を用いて,不定積分$\displaystyle I=\int \log y \, dy$,$\displaystyle J=\int (\log y)^2 \, dy$を求めよ.
(5)$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
岩手大学 国立 岩手大学 2016年 第5問
$a$を定数とし,曲線$y=e^x-a(x-2)$を$C$とする.曲線$C$と$x$軸が接しているとき,次の問いに答えよ.

(1)曲線$C$と$x$軸の接点の$x$座標,および定数$a$の値を求めよ.
(2)曲線$C$と$x$軸および$y$軸で囲まれた部分を$x$軸の周りに$1$回転してできる回転体の体積を求めよ.
千葉大学 国立 千葉大学 2016年 第4問
$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 2)$を直径とする円周から$\mathrm{O}$を除いた部分を点$\mathrm{Q}$が動く.点$\mathrm{A}$を通り$x$軸に平行な直線と直線$\mathrm{OQ}$の交点を$\mathrm{R}$とする.点$\mathrm{Q}$を通り$x$軸と平行な直線と,点$\mathrm{R}$を通り$y$軸と平行な直線との交点を$\mathrm{P}$とする.点$\mathrm{P}$の軌跡を$C$とする.

(1)$C$の方程式を求めよ.
(2)正の実数$a$に対して,$C$と$x$軸と$2$直線$x=a$,$x=-a$によって囲まれる図形を,$x$軸の周りに$1$回転してできる立体の体積を$V(a)$とする.このとき,$\displaystyle \lim_{a \to \infty}V(a)$を求めよ.
千葉大学 国立 千葉大学 2016年 第5問
$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 2)$を直径とする円周から$\mathrm{O}$を除いた部分を点$\mathrm{Q}$が動く.点$\mathrm{A}$を通り$x$軸に平行な直線と直線$\mathrm{OQ}$の交点を$\mathrm{R}$とする.点$\mathrm{Q}$を通り$x$軸と平行な直線と,点$\mathrm{R}$を通り$y$軸と平行な直線との交点を$\mathrm{P}$とする.点$\mathrm{P}$の軌跡を$C$とする.

(1)$C$の方程式を求めよ.
(2)正の実数$a$に対して,$C$と$x$軸と$2$直線$x=a$,$x=-a$によって囲まれる図形を,$x$軸の周りに$1$回転してできる立体の体積を$V(a)$とする.このとき,$\displaystyle \lim_{a \to \infty}V(a)$を求めよ.
熊本大学 国立 熊本大学 2016年 第2問
$x \geqq 1$で定義された関数
\[ f(x)=\frac{\log x}{x^2} \]
について,以下の問いに答えよ.

(1)$x \geqq 1$における$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$a$とする.曲線$y=f(x)$と$2$直線$y=0$,$x=a$で囲まれた図形を$D$とする.$D$の面積を求めよ.
(3)$(2)$の図形$D$を$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
熊本大学 国立 熊本大学 2016年 第4問
$x \geqq 1$で定義された関数
\[ f(x)=\frac{\log x}{x^2} \]
について,以下の問いに答えよ.

(1)$x \geqq 1$における$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$a$とする.曲線$y=f(x)$と$2$直線$y=0$,$x=a$で囲まれた図形を$D$とする.$D$の面積を求めよ.
(3)$(2)$の図形$D$を$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2016年 第3問
$a,\ b$を実数とする.$0 \leqq x \leqq \pi$を定義域とする$2$つの関数


$\displaystyle f(x)=\left\{ \begin{array}{cl}
\displaystyle\frac{x \sin x}{1-\cos x} & (0<x \leqq \pi) \\
a & (x=0)
\end{array} \right.$

$\displaystyle g(x)=\left\{ \begin{array}{cl}
\displaystyle\frac{\sin x}{\sqrt{x}} & (0<x \leqq \pi) \\
b & (x=0)
\end{array} \right.$


を考える.$f(x),\ g(x)$はともに$x=0$で連続であるとする.

(1)$a,\ b$の値を求めよ.
(2)$xy$平面において,連立不等式
\[ \left\{ \begin{array}{l}
0 \leqq x \leqq \pi \\
0 \leqq y \leqq f(x)g(x)
\end{array} \right. \]
の表す領域$D$を考える.$D$を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
宮崎大学 国立 宮崎大学 2016年 第5問
$k>0$,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.座標平面上の原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$に対し,第一象限の点$\mathrm{P}$を,$\angle \mathrm{AOP}=\theta$を満たすように円$D:x^2+y^2=1$上にとり,直線$\mathrm{OP}$と直線$x=k \theta$との交点を$\mathrm{Q}$とする.$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で動かすときの点$\mathrm{Q}$の軌跡を曲線$y=f(x)$とし,関数$\displaystyle y=g(x)=\frac{f(x)}{x}$で定める曲線を$C$とする.このとき,次の各問に答えよ.

(1)$r(\theta)=\mathrm{OQ}$とするとき,$\displaystyle \lim_{\theta \to +0} r(\theta)$の値を求めよ.
(2)点$\mathrm{Q}$がつねに円$D$の内部にあるための$k$の条件を求めよ.
(3)関数$g(x)$の増減と凹凸を調べ,曲線$C$の概形をかけ.
(4)曲線$C$と$x$軸および$2$直線$\displaystyle x=\frac{\pi}{4}k$,$\displaystyle x=\frac{\pi}{3}k$とで囲まれた図形を$x$軸のまわりに$1$回転させてできる立体の体積を,$k$を用いて表せ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の曲線$C:y=e^x$に対し,次の問に答えよ.

(1)原点から曲線$C$に引いた接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および$y$軸で囲まれた図形$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(4)部分積分法を用いて,不定積分$\displaystyle I=\int \log y \, dy$,$\displaystyle J=\int (\log y)^2 \, dy$を求めよ.
(5)$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
スポンサーリンク

「回転体の体積」とは・・・

 まだこのタグの説明は執筆されていません。