タグ「回転」の検索結果

1ページ目:全201問中1問~10問を表示)
三重大学 国立 三重大学 2016年 第4問
$\log x$は$x$の自然対数とする.

(1)$2$と$\log 4$の大小関係を,理由をつけて述べよ.必要ならば$e=2.718 \cdots$を用いてよい.さらに$x>0$のとき$\sqrt{x}>\log x$を示せ.
(2)$x>1$のとき,$\displaystyle y=\frac{x}{\log x}$の増減,極値およびグラフの凹凸を調べ,このグラフの概形をかけ.
(3)$\displaystyle y=\frac{1}{\sqrt{\log x}} (e \leqq x \leqq e^2)$と$\displaystyle y=\frac{1}{\log x} (e \leqq x \leqq e^2)$,および$x=e^2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
筑波大学 国立 筑波大学 2016年 第4問
関数$f(x)=2 \sqrt{x} e^{-x} (x \geqq 0)$について次の問いに答えよ.

(1)$f^\prime(a)=0,\ f^{\prime\prime}(b)=0$を満たす$a,\ b$を求め,$y=f(x)$のグラフの概形を描け.ただし,$\displaystyle \lim_{x \to \infty} \sqrt{x}e^{-x}=0$であることは証明なしで用いてよい.
(2)$k \geqq 0$のとき$\displaystyle V(k)=\int_0^k xe^{-2x} \, dx$を$k$を用いて表せ.
(3)$(1)$で求めた$a,\ b$に対して曲線$y=f(x)$と$x$軸および$2$直線$x=a$,$x=b$で囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
大阪大学 国立 大阪大学 2016年 第3問
座標平面において,原点$\mathrm{O}$を中心とする半径$r$の円と放物線$y=\sqrt{2}(x-1)^2$は,ただ$1$つの共有点$(a,\ b)$をもつとする.

(1)$a,\ b,\ r$の値をそれぞれ求めよ.
(2)連立不等式
\[ a \leqq x \leqq 1,\quad 0 \leqq y \leqq \sqrt{2}(x-1)^2,\quad x^2+y^2 \geqq r^2 \]
の表す領域を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
広島大学 国立 広島大学 2016年 第3問
複素数平面上を,点$\mathrm{P}$が次のように移動する.

(i) 時刻$0$では,$\mathrm{P}$は原点にいる.時刻$1$まで,$\mathrm{P}$は実軸の正の方向に速さ$1$で移動する.移動後の$\mathrm{P}$の位置を$\mathrm{Q}_1(z_1)$とすると,$z_1=1$である.
(ii) 時刻$1$に$\mathrm{P}$は$\mathrm{Q}_1(z_1)$において進行方向を$\displaystyle \frac{\pi}{4}$回転し,時刻$2$までその方向に速さ$\displaystyle \frac{1}{\sqrt{2}}$で移動する.移動後の$\mathrm{P}$の位置を$\mathrm{Q}_2(z_2)$とすると,$\displaystyle z_2=\frac{3+i}{2}$である.
(iii) 以下同様に,時刻$n$に$\mathrm{P}$は$\mathrm{Q}_n(z_n)$において進行方向を$\displaystyle \frac{\pi}{4}$回転し,時刻$n+1$までその方向に速さ$\displaystyle \left( \frac{1}{\sqrt{2}} \right)^n$で移動する.移動後の$\mathrm{P}$の位置を$\mathrm{Q}_{n+1}(z_{n+1})$とする.ただし$n$は自然数である.

$\displaystyle \alpha=\frac{1+i}{2}$として,次の問いに答えよ.

(1)$z_3,\ z_4$を求めよ.
(2)$z_n$を$\alpha,\ n$を用いて表せ.
(3)$\mathrm{P}$が$\mathrm{Q}_1(z_1),\ \mathrm{Q}_2(z_2),\ \cdots$と移動するとき,$\mathrm{P}$はある点$\mathrm{Q}(w)$に限りなく近づく.$w$を求めよ.
(4)$z_n$の実部が$(3)$で求めた$w$の実部より大きくなるようなすべての$n$を求めよ.
信州大学 国立 信州大学 2016年 第4問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
信州大学 国立 信州大学 2016年 第4問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
信州大学 国立 信州大学 2016年 第2問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
静岡大学 国立 静岡大学 2016年 第3問
次の各問に答えよ.

(1)$x>1$のとき$\log x<2 \sqrt{x}-2$を示し,これを用いて$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}$を求めよ.ただし,$\log$は自然対数を表す.
(2)関数$\displaystyle y=\frac{\log x}{x} (x>0)$の増減,凹凸を調べ,そのグラフの概形をかけ.
(3)定積分$I_n (n=1,\ 2,\ 3,\ \cdots)$を以下で定義する.
\[ I_n=\int_1^e \frac{(\log x)^{n-1}}{x^2} \, dx \]
ただし,$e$は自然対数の底である.このとき,次の等式が成り立つことを示せ.
\[ I_{n+1}=-\frac{1}{e}+nI_n \quad (n=1,\ 2,\ 3,\ \cdots) \quad \cdots \quad (*) \]
(4)等式$(*)$を用いて,関数$\displaystyle y=\frac{\log x}{x}$のグラフと$x$軸および直線$x=e$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
九州工業大学 国立 九州工業大学 2016年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円を$C_1$とする.円$C_1$に外接しながら,半径$1$の円$C_2$がすべることなく回転する.円$C_2$の中心を$\mathrm{P}$とし,円$C_2$上の点$\mathrm{Q}$は最初,$x$軸上の点$\mathrm{A}(3,\ 0)$にあるものとする.半直線$\mathrm{PQ}$上で点$\mathrm{P}$からの距離が$2$の点を$\mathrm{R}$とし,$\mathrm{OP}$が$x$軸の正の向きとなす角を$\theta$とする.$C_2$が回転して$\theta$が$0$から$2\pi$まで変化するとき,点$\mathrm{R}$が描く曲線を$C$とする.曲線$C$の概形を図$1$に示す.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$を通り$x$軸と平行な直線を$\ell$とする.直線$\ell$と線分$\mathrm{PR}$のなす角$\alpha$を,$\theta$を用いて表せ.また,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(3)曲線$C$と$x$軸の共有点の座標をすべて求めよ.
(4)曲線$C$と$y$軸の共有点の座標をすべて求めよ.
(5)点$\mathrm{R}$の$x$座標が最小となるときの点$\mathrm{R}$の座標をすべて求めよ.
(6)曲線$C$と$x$軸,$y$軸に囲まれた図$2$の斜線部分の面積を求めよ.
信州大学 国立 信州大学 2016年 第5問
$\mathrm{P}_0$,$\mathrm{Q}_0$を複素数平面上の異なる点とする.自然数$k$に対して,平面上の点$\mathrm{P}_k$,$\mathrm{Q}_k$を以下の条件$(ⅰ)$,$(ⅱ)$を満たすものとして定める.

(i) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k-1}$を$\mathrm{P}_{k-1}$を中心として角$\theta$だけ回転させた線分が$\mathrm{P}_{k-1} \mathrm{Q}_{k}$となる.
(ii) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k}$を$\mathrm{Q}_{k}$を中心として角$\theta^\prime$だけ回転させた線分が$\mathrm{Q}_{k} \mathrm{P}_{k}$となる.

以下の問いに答えよ.

(1)$\mathrm{Q}_{k+2}=\mathrm{Q}_k$となるための,$\theta$と$\theta^\prime$に関する条件を求めよ.
(2)$0 \leqq \theta<2\pi$,$\theta=-\theta^\prime$,$|\mathrm{Q|_0 \mathrm{P}_0}=1$とする.$\mathrm{Q}_0$を中心とし,半径が$r$の円を$C$とする.$\mathrm{P}_{n-1}$は$C$の内部,$\mathrm{Q}_n$は$C$の外部にあるという.このとき,$r^2$が取り得る値の範囲を$n$と$\theta$を用いて表せ.
スポンサーリンク

「回転」とは・・・

 まだこのタグの説明は執筆されていません。