タグ「回数」の検索結果

1ページ目:全67問中1問~10問を表示)
鹿児島大学 国立 鹿児島大学 2016年 第6問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
福井大学 国立 福井大学 2016年 第3問
表の出る確率が$r$,裏の出る確率が$1-r$であるコインがある.このコインを繰り返し投げ,表の出た回数と裏の出た回数の差の絶対値が$2$になったときにコイン投げを終了する.ちょうど$2n$回で終了する確率を$p_n$とし,$2n$回以下で終了する確率を$q_n$とする.ただし,$n$は正の整数とする.このとき,以下の問いに答えよ.

(1)$p_n$を求めよ.
(2)$q_n$を求めよ.
(3)$\displaystyle r=\frac{1}{4}$のとき,$q_n \geqq 0.999$となる最小の$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
九州大学 国立 九州大学 2016年 第3問
袋の中に,赤玉が$15$個,青玉が$10$個,白玉が$5$個入っている.袋の中から玉を$1$個取り出し,取り出した玉の色に応じて,以下の操作で座標平面に置いたコインを動かすことを考える.


\mon[(操作)] コインが点$(x,\ y)$にあるものとする.赤玉を取り出したときにはコインを点$(x+1,\ y)$に移動,青玉を取り出したときには点$(x,\ y+1)$に移動,白玉を取り出したときには点$(x-1,\ y-1)$に移動し,取り出した球は袋に戻す.

最初に原点$(0,\ 0)$にコインを置き,この操作を繰り返して行う.指定した回数だけ操作を繰り返した後,コインが置かれている点を到達点と呼ぶことにする.このとき,以下の問いに答えよ.

(1)操作を$n$回繰り返したとき,白玉を$1$度だけ取り出したとする.このとき,到達点となり得る点をすべて求めよ.
(2)操作を$n$回繰り返したとき,到達点となり得る点の個数を求めよ.
(3)座標平面上の$4$点$(1,\ 1)$,$(-1,\ 1)$,$(-1,\ -1)$,$(1,\ -1)$を頂点とする正方形$D$を考える.操作を$n$回繰り返したとき,到達点が$D$の内部または辺上にある確率を$P_n$とする.$P_3$を求めよ.
(4)自然数$N$に対して$P_{3N}$を求めよ.
新潟大学 国立 新潟大学 2016年 第3問
$3$が書かれたカードが$10$枚,$5$が書かれたカードが$10$枚,$10$が書かれたカードが$10$枚,全部で$30$枚のカードが箱の中にある.この中から$1$枚ずつカードを取り出していき,取り出したカードに書かれている数の合計が$10$以上になった時点で操作を終了する.ただし各カードには必ず$3,\ 5,\ 10$いずれかの数が$1$つ書かれているものとし,取り出したカードは箱の中に戻さないものとする.次の問いに答えよ.

(1)操作が終了するまでに,カードを取り出した回数が$1$回である確率を求めよ.
(2)操作が終了するまでに,カードを取り出した回数が$2$回である確率を求めよ.
(3)操作が終了したときに,取り出したカードに書かれている数の合計が$12$以上である確率を求めよ.
新潟大学 国立 新潟大学 2016年 第3問
$3$が書かれたカードが$10$枚,$5$が書かれたカードが$10$枚,$10$が書かれたカードが$10$枚,全部で$30$枚のカードが箱の中にある.この中から$1$枚ずつカードを取り出していき,取り出したカードに書かれている数の合計が$10$以上になった時点で操作を終了する.ただし各カードには必ず$3,\ 5,\ 10$いずれかの数が$1$つ書かれているものとし,取り出したカードは箱の中に戻さないものとする.次の問いに答えよ.

(1)操作が終了するまでに,カードを取り出した回数が$1$回である確率を求めよ.
(2)操作が終了するまでに,カードを取り出した回数が$2$回である確率を求めよ.
(3)操作が終了したときに,取り出したカードに書かれている数の合計が$12$以上である確率を求めよ.
福井大学 国立 福井大学 2016年 第4問
表の出る確率が$r$,裏の出る確率が$1-r$であるコインがある.このコインを繰り返し投げ,表の出た回数と裏の出た回数の差の絶対値が$2$になったときにコイン投げを終了する.ちょうど$2n$回で終了する確率を$p_n$とし,$2n$回以下で終了する確率を$q_n$とする.ただし,$n$は正の整数とする.このとき,以下の問いに答えよ.

(1)$p_n$を求めよ.
(2)無限級数$\displaystyle \sum_{n=1}^\infty np_n$の和を求めよ.ただし,$0 \leqq s<1$に対して$\displaystyle \lim_{n \to \infty}ns^n=0$であることを用いてもよい.
(3)$\displaystyle r=\frac{1}{4}$のとき,$q_n \geqq 0.999$となる最小の$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
早稲田大学 私立 早稲田大学 2016年 第1問
$1$個のさいころと$1$枚の硬貨がある.はじめにさいころを投げて出た目を$X$とし,続けて硬貨を$X$回投げて表が出る回数を$Z$とする.以下の問に答えよ.

(1)$X=5$であったとき$Z=4$となる確率を求めよ.
(2)$Z=4$となる確率を求めよ.
(3)$Z \leqq 3$となる確率を求めよ.
北九州市立大学 公立 北九州市立大学 2016年 第4問
$1$個のサイコロを$1$回投げ,出た目の数と同じ回数だけ$1$枚のコインを繰り返し投げる.以下の問題に答えよ.

(1)サイコロの出た目が$4$であった場合に,コインの表の出た回数と裏の出た回数が同じである確率を求めよ.
(2)コインの表と裏が交互に出る確率を求めよ.ただし,交互とは複数回コインを投げて表と裏が互い違いに出る場合をいう.
(3)コインの表の出た回数と裏の出た回数が同じである確率を求めよ.
(4)コインの表の出た回数が裏の出た回数より多い確率を求めよ.
(5)コインの表の出た回数と裏の出た回数が同じである場合に,サイコロの出た目が$4$であった確率を求めよ.
スポンサーリンク

「回数」とは・・・

 まだこのタグの説明は執筆されていません。