タグ「分母」の検索結果

1ページ目:全29問中1問~10問を表示)
滋賀医科大学 国立 滋賀医科大学 2016年 第2問
分母が奇数,分子が整数の分数で表せる有理数を「控えめな有理数」と呼ぶことにする.例えば$\displaystyle -\frac{1}{3}$,$2$はそれぞれ$\displaystyle \frac{-1}{3},\ \frac{2}{1}$と表せるから,ともに控えめな有理数である.$1$個以上の有限個の控えめな有理数$a_1,\ \cdots,\ a_n$に対して,集合$S \langle a_1,\ \cdots,\ a_n \rangle$を,
\[ S \langle a_1,\ \cdots,\ a_n \rangle=\{x_1a_1+\cdots+x_na_n \;|\; x_1,\ \cdots,\ x_n \ \text{は控えめな有理数} \} \]
と定める.例えば$1$は$\displaystyle 1 \cdot \left( -\frac{1}{3} \right) +\frac{2}{3} \cdot 2$と表せるから,$\displaystyle S \langle -\frac{1}{3},\ 2 \rangle$の要素である.

(1)控えめな有理数$a_1,\ \cdots,\ a_n$が定める集合$S \langle a_1,\ \cdots,\ a_n \rangle$の要素は控えめな有理数であることを示せ.
(2)$0$でない控えめな有理数$a$が与えられたとき,$S \langle a \rangle=S \langle 2^t \rangle$となる$0$以上の整数$t$が存在することを示せ.
(3)控えめな有理数$a_1,\ \cdots,\ a_n$が与えられたとき,$S \langle a_1,\ \cdots,\ a_n \rangle=S \langle b \rangle$となる控えめな有理数$b$が存在することを示せ.
(4)$2016$が属する集合$S \langle a_1,\ \cdots,\ a_n \rangle$はいくつあるか.ただし$a_1,\ \cdots,\ a_n$は控えめな有理数であるとし,$a_1,\ \cdots,\ a_n$と$b_1,\ \cdots,\ b_m$が異なっていても,$S \langle a_1,\ \cdots,\ a_n \rangle=S \langle b_1,\ \cdots,\ b_m \rangle$であれば,$S \langle a_1,\ \cdots,\ a_n \rangle$と$S \langle b_1,\ \cdots,\ b_m \rangle$は一つの集合として数える.
立教大学 私立 立教大学 2016年 第2問
$a$を正の実数とし,数列$\{a_n\}$を次で定義する.
\[ a_1=a,\quad a_{n+1}=1+\frac{2}{a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$a_2,\ a_3,\ a_4$をそれぞれ分子と分母が$a$の整式となっている分数式で表せ.
(2)数列$\{b_n\}$を$b_n=(-1)^n a_1 a_2 \cdots a_n$により定めるとき,$b_1,\ b_2,\ b_3,\ b_4$をそれぞれ$a$を用いて表せ.
(3)$b_{n+1}$と$b_n$を用いて$b_{n+2}$を表せ.
(4)数列$\{c_n\}$を$c_n=b_{n+1}-b_n$により定めるとき,$n$と$a$を用いて$c_n$を表せ.
(5)$a=1$のとき,$b_n$を$n$を用いて表せ.また,$a_n$を$n$を用いて表せ.
広島国際学院大学 私立 広島国際学院大学 2016年 第1問
以下の問いに答えなさい.

(1)次の式を因数分解しなさい.
\[ 2xy-y^2+2x-y \]
(2)次の式の分母を有理化しなさい.
\[ \frac{12}{\sqrt{2}+\sqrt{3}-\sqrt{5}} \]
広島女学院大学 私立 広島女学院大学 2016年 第1問
$\displaystyle \frac{1}{2 \sqrt{3}+\sqrt{5}+\sqrt{7}}$の分母を有理化せよ.$[$1$]$
日本医科大学 私立 日本医科大学 2016年 第1問
次の各問いに答えよ.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1+\sqrt{3}$,$\mathrm{BC}=\mathrm{CD}$,$\mathrm{DA}=2$,また$\angle \mathrm{DAB}={60}^\circ$である.四角形$\mathrm{ABCD}$の対角線の交点を$\mathrm{P}$,$\angle \mathrm{BCD}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$,$\mathrm{BD}$と$\mathrm{CQ}$の交点を$\mathrm{R}$とするとき,以下の各問いに答えよ.なお数値の分母は有理化すること.

(i) 辺$\mathrm{BD}$の長さを求めよ.
(ii) $\angle \mathrm{ABD}$の大きさを求めよ.
(iii) 辺$\mathrm{BP}$の長さを求めよ.
\mon[$\tokeishi$] 三角形$\mathrm{PQR}$の内接円の半径を求めよ.

(2)自然数$n$に対して,$n$を$3$で割った余りを$a_n$,$n^2$を$3$で割った余りを$b_n$とするとき,以下の各問いに答えよ.

(i) $\displaystyle \sum_{n=1}^{2016} (a_n+b_n)$の値を求めよ.
(ii) $\displaystyle \sum_{n=1}^m (a_{n+2}+b_{n+1}+2a_n)=2016$を満たす自然数$m$の値を求めよ.

(3)$\mathrm{O}$を原点とする座標平面上に,次のような双曲線$C$と直線$\ell_k$($k$は実数の定数)が与えられているとき,以下の各問いに答えよ.
\[ C:\frac{x^2}{4}-\frac{y^2}{3}=-1 \qquad \ell_k:3x-4y+k=0 \]

(i) $C$と$\ell_k$が接するような$k$の値を求めよ.
(ii) $C$上の点と直線$\ell_0:3x-4y=0$の距離の最小値を求めよ.
昭和薬科大学 私立 昭和薬科大学 2016年 第1問
次の問いに答えよ.

(1)赤球と白球を合わせて$13$個の球が入っている袋から同時に$2$個の球を取り出す.$2$個の球が同じ色である確率が$\displaystyle \frac{7}{13}$であるとき,この袋には$[ア]$個の赤球が入っている.ただし,赤球の個数は白球の個数より多いとする.
(2)$\triangle \mathrm{ABC}$は$\mathrm{AB}=\mathrm{AC}$の二等辺三角形であり,$\mathrm{BC}=2$とする.$\triangle \mathrm{ABC}$の面積が$2 \sqrt{2}$のとき,$\displaystyle \cos A=\frac{[イ]}{[ウ]}$である.
(3)不等式$\sqrt{(x+2)^2}+\sqrt{(2x-3)^2} \leqq 4$の解は$\displaystyle [エ] \leqq x \leqq \frac{[オ]}{[カ]}$である.
(4)分母が$12$である正の既約分数を値が小さい順に並べた数列
\[ \frac{1}{12},\ \frac{5}{12},\ \frac{7}{12},\ \frac{11}{12},\ \frac{13}{12},\ \cdots \]
の初項から第$n$項までの和を$S_n$とすると,$S_4=[キ]$及び$S_8=[ク]$であり,

$\displaystyle S_{39}=\frac{\kakkofour{ケ}{コ}{サ}{シ}}{[ス][セ]}$である.
(5)$\displaystyle \left( \displaystyle\frac{1}{45} \right)^{100}$を小数で表したとき,小数第$[ソ][タ][チ]$位に初めて$0$でない数字が現れる.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(6)$x$の関数$\displaystyle f(x)=\int_1^x y^2(y-3) \, dy$は$x=[ツ]$のとき最小値$[テ][ト]$をとる.
大阪工業大学 私立 大阪工業大学 2016年 第3問
次の空所を埋めよ.

(1)$\log_{10}2=A$,$\log_{10}3=B$とするとき,$\log_{10}6$,$\log_{10}5$の値をそれぞれ$A,\ B$を用いて表すと,$\log_{10}6=[ア]$,$\log_{10}5=[イ]$である.
また,$\log_{10}{(0.6)}^{50}=50(\log_{10}6-[ウ])$であるから,${0.6}^{50}$は小数第$[エ]$位にはじめて$0$でない数字が現れる.ただし,$\log_{10}6=0.7782$を用いてもよい.
(2)$m,\ n$を正の整数として,分数$\displaystyle \frac{n}{m}$がこれ以上約分できないとき,すなわち,$m,\ n$が互いに素であるとき,$\displaystyle \frac{n}{m}$を既約分数とよぶ.$10$を分母とする既約分数で,値が$0$より大きく,$1$より小さいものは$[オ]$個あり,それらの総和は$[カ]$である.
また,$62$を分母とする既約分数で,値が$0$より大きく,$1$より小さいものの総和は$[キ]$である.
広島経済大学 私立 広島経済大学 2016年 第1問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$\displaystyle \frac{1}{1+\sqrt{6}+\sqrt{7}}$の分母を有理化すると,$\displaystyle \frac{[$1$]+\sqrt{[$2$]}-\sqrt{[$3$]}}{[$4$]}$となる.

(2)$4x^2+11xy+6y^2+18x+11y-10$を因数分解すると,
\[ (x+[$5$]y+[$6$])([$7$]x+[$8$]y-[$9$]) \]
となる.
(3)$2700$の正の約数の個数は$[$10$]$個である.
(4)次の問いに答えよ.

(i) $101011_{(2)}$を$10$進法で表すと$[$11$]$である.

(ii) $0.2101_{(3)}$を$10$進法で表すと$\displaystyle \frac{[$12$]}{[$13$]}$である.
天使大学 私立 天使大学 2016年 第2問
次の問いに答えなさい.

(1)分母と分子が整数である有理数全体の集合を$Q$とおく.さらに$2$以上$4$以下で分母が$15$である$Q$の部分集合を$U$とおく.次の問いに答えなさい.

(i) 分子が$3$の倍数である$U$の要素の個数$N_1$と分子が$5$の倍数である$U$の要素の個数$N_2$を求めなさい.

$N_1=\mkakko{$\mathrm{a}$} \mkakko{$\mathrm{b}$}$ \quad $N_2=\mkakko{$\mathrm{c}$}$

(ii) $U$の要素の中で,既約分数の個数を$N_3$とする.$N_3$を求めなさい.

$N_3=\mkakko{$\mathrm{d}$} \mkakko{$\mathrm{e}$}$


(2)三角形$\mathrm{ABC}$において$\angle \mathrm{A}={30}^\circ$,$\angle \mathrm{B}={90}^\circ$とする.直線$\mathrm{AB}$上に$\mathrm{AP}=\mathrm{AC}$を満たす点$\mathrm{P}$をとり,$\angle \mathrm{CPA}=\theta$とおく.次の問いに答えなさい.

(i) $\mathrm{BA}>\mathrm{BP}$のとき,$\tan \theta=\mkakko{$\mathrm{f}$}+\mkakko{$\mathrm{g}$} \sqrt{\mkakko{$\mathrm{h}$}}$である.
(ii) $\mathrm{BA}<\mathrm{BP}$のとき,$\tan \theta=\mkakko{$\mathrm{i}$}+\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$} \sqrt{\mkakko{$\mathrm{l}$}}$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第1問
$\displaystyle \frac{\sqrt{3}+\sqrt{2}+1}{\sqrt{3}-\sqrt{2}+1}$の分母を有理化せよ.
スポンサーリンク

「分母」とは・・・

 まだこのタグの説明は執筆されていません。