タグ「分数」の検索結果

36ページ目:全4648問中351問~360問を表示)
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$0 \leqq \theta \leqq \pi$の範囲で,$\cos^2 \theta+\sin \theta \cos \theta=0$を満たす$\theta$をすべて求めると$\theta=[ア]$である.
(2)$10$本のくじのうち当たりくじは$n$本である.同時に$2$本のくじを引いたとき,$2$本ともはずれである確率は$\displaystyle \frac{1}{15}$であった.このとき,$n=[イ]$である.
(3)$\mathrm{AB}=20$,$\mathrm{BC}=24$,$\mathrm{AC}=16$である三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の二等分線が$\mathrm{BC}$と交わる点を$\mathrm{D}$とする.このとき,$\mathrm{BD}=[ウ]$である.
(4)頂点が反時計回りに$\mathrm{ABCDEF}$である正六角形について,$\overrightarrow{\mathrm{FB}}=a \overrightarrow{\mathrm{AB}}+b \overrightarrow{\mathrm{AC}}$と表したとき,$a=[エ]$,$b=[オ]$である.ただし,$a$と$b$は実数とする.
(5)$(3+i)(x+yi)=6+5i$を満たす実数$x,\ y$を求めると,$x=[カ]$,$y=[キ]$である.ただし,$i$は虚数単位とする.
(6)直線$\ell$に関して点$(3,\ 2)$と対称な点は$(1,\ 4)$である.このとき,直線$\ell$の方程式を$ax+by=1$とすると,$a=[ク]$,$b=[ケ]$である.
(7)$975$の正の約数の個数は$[コ]$個である.
(8)$-1 \leqq x \leqq 5$の範囲で,関数$\displaystyle f(x)=\int_{-3}^x (t^2-2t-3) \, dt$が最小値をとるのは$x=[サ]$のときである.
立教大学 私立 立教大学 2016年 第3問
放物線$C:y=x^2$と直線$\ell:y=kx+k (k>0)$に対し,放物線$C$と直線$\ell$の$2$個の交点を$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) (a<b)$とする.さらに,点$\mathrm{A}$における放物線$C$の接線を$m_1$,点$\mathrm{B}$における放物線$C$の接線を$m_2$とする.このとき,次の問いに答えよ.

(1)直線$m_1$の方程式を$a$を用いて表せ.また,直線$m_2$の方程式を$b$を用いて表せ.
(2)$a$と$b$をそれぞれ$k$を用いて表せ.
(3)$2$つの直線$m_1$と$m_2$の交点を$\mathrm{D}(p,\ q)$とするとき,$p$と$q$のそれぞれを$k$を用いて表せ.
(4)放物線$C$と直線$\ell$で囲まれた図形の面積$T$を$k$を用いて表せ.
(5)$2$点$\mathrm{E}(a,\ q)$,$\mathrm{F}(b,\ q)$をとる.三角形$\mathrm{AED}$と三角形$\mathrm{BFD}$の面積の和$S$を$k$を用いて表せ.また$\displaystyle \frac{S}{T}$を求めよ.
南山大学 私立 南山大学 2016年 第2問
関数$f(x)=xe^x$と曲線$C:y=f(x)$を考える.

(1)導関数$f^\prime(x)$を求めよ.
(2)$C$上の点$(t,\ te^t)$における$C$の接線の方程式を求めよ.

(3)$C$の接線で点$\displaystyle \left( \frac{1}{2},\ 0 \right)$を通るものを求めよ.

(4)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(5)$(3)$で求めた接線のうち,接点の$x$座標が$\displaystyle \frac{1}{2}$より大きいものを$\ell$とするとき,$C$と$\ell$と直線$\displaystyle x=\frac{1}{2}$とで囲まれた部分の面積$S$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の問いに答えよ.

(1)整式$P(x)$は実数を係数にもつ$x$の$3$次式であり,$x^3$の係数は$1$である.$P(x)$を$x-7$で割ると$8$余り,$x-9$で割ると$12$余る.方程式$P(x)=0$は$a+bi$を解に持つ.$a,\ b$は$1$桁の自然数であり,$i$は虚数単位とする.
ただし$a,\ b$の組み合わせは,$2a+b$が連続する$2$つの整数の積の値と等しくなるもののうち,$a-b$が最大となるものとする.このとき,

(i) 整式$P(x)$を$(x-7)(x-9)$で割ると,余りは$[$1$]x-[$2$]$である.
(ii) $a=[$3$]$,$b=[$4$]$であり,方程式$P(x)=0$の実数解は$[$5$]$である.

(2)$xy$平面上に曲線$C_1:y=-x^2-x+8$がある.$C_1$上の動点$\mathrm{A}$を点$(1,\ 2)$に関して対称移動した点$\mathrm{B}$の軌跡を$C_2$とする.
$C_1$と$C_2$の$2$つの交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とし,また,$C_1,\ C_2$と直線$x=k$との交点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とする.ただし,$k$は$\alpha<k<\beta$を満たす実数とする.このとき,

(i) $C_2$の方程式は$y=x^2-[$6$]x+[$7$]$である.

(ii) 三角形$\mathrm{QRS}$の面積は$\displaystyle k=\frac{[$8$]}{[$9$]}$で最大となる.


(3)$xy$平面上に,原点$\mathrm{O}$を中心とする単位円$C$と,$y$軸の正の部分を始線として点$\mathrm{O}$を中心に回転する$2$つの動径$L_1,\ L_2$がある.円$C$と$L_1,\ L_2$との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.動径$L_1,\ L_2$の表す角をそれぞれ$\theta_1,\ \theta_2$とおき,$\theta_1=2\pi t,\ \theta_2=-\pi t$とする.ただし$t$は,$t \geqq 0$を満たす実数である.このとき,

(i) 点$\mathrm{P}$と点$\mathrm{Q}$が一致する$t$のうち,$t=0$を除く最小の$t$の値は$\displaystyle \frac{[$10$]}{[$11$]}$である.

(ii) 点$\mathrm{P}$の$y$座標と点$\mathrm{Q}$の$y$座標の和の最小値は$\displaystyle \frac{[$12$][$13$]}{[$14$]}$である.


(4)直角三角形$\mathrm{AOB}$($\angle \mathrm{AOB}={90}^\circ$)に内接する半径$r$の円の中心を$\mathrm{P}$とする.辺$\mathrm{AB}$と円の接点を$\mathrm{Q}$とし,線分$\mathrm{AQ}$の長さを$a$,線分$\mathrm{BQ}$の長さを$b$とする.三角形$\mathrm{AOB}$に対して,自然数$l,\ m,\ n (n<m<l)$は,$l \overrightarrow{\mathrm{OP}}+m \overrightarrow{\mathrm{AP}}+n \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たす.このとき,

(i) 三角形$\mathrm{AOB}$の$3$辺の長さの合計は$[$15$]a+[$16$]b+[$17$]r$である.

(ii) $l=17$のとき,$m=[$18$][$19$]$,$n=[$20$]$であり,$\displaystyle \frac{a}{b}=\frac{[$21$]}{[$22$][$23$]}$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$2$つの関数$f(x)=x^3-x^2-x+c$,$g(x)=4x+1$がある.$x$は$0 \leqq x \leqq a$を満たす.ただし,$a$は整数,$c$は実数とする.

$xy$平面上の曲線$y=f(x)$上の異なる$2$点$(0,\ f(0))$,$(a,\ f(a))$を結ぶ直線は,$\displaystyle x=\frac{a}{3}$における$y=f(x)$の接線と直交する.このとき,


(1)$a=[$24$]$である.
(2)$c=0$のとき,関数$f(x)$の最大値は$[$25$]$である.
(3)方程式$f(x)=g(x)$が$2$つの異なる実数解を持つような$c$の値の範囲は
\[ [$26$] \leqq c<\frac{[$27$][$28$][$29$]}{[$30$][$31$]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
数列$\{a_n\}$,$\{b_n\}$はそれぞれ公比を$r_a,\ r_b$とする等比数列である.$a_2-a_1=2+\sqrt{5}$であり,$a_3-a_1$は$a_2+a_1$の$\displaystyle \frac{1+\sqrt{5}}{2}$倍である.$\{b_n\}$は,$\displaystyle b_n=\left( \frac{7-3 \sqrt{5}}{2} \right)^n a_n$とする.また,数列$\{c_n\}$は,$\displaystyle c_n=\frac{1}{r_a-r_b}(a_n-b_n)$とする.ただし,$n$は自然数とする.このとき,

(1)$\displaystyle r_a=\frac{[$32$]+\sqrt{[$33$]}}{[$34$]}$である.

(2)$c_4=[$35$][$36$]$である.

(3)$\displaystyle \frac{c_{16}}{c_8}=\kakkofour{$37$}{$38$}{$39$}{$40$}$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$チームが試合を行う.第$1$試合に$\mathrm{A}$と$\mathrm{B}$が対戦する.第$2$試合以降は,直前の試合に勝ったチームが残りの$1$チームと対戦することを繰り返す.最初に$2$連勝したチームを優勝とする.いずれのチームも試合に勝つ確率は$\displaystyle \frac{1}{2}$であり,各試合に引き分けはないものとする.このとき,

(1)第$5$試合で$\mathrm{A}$が優勝する確率は$\displaystyle \frac{[$41$]}{[$42$][$43$]}$であり,第$6$試合で$\mathrm{C}$が優勝する確率は$\displaystyle \frac{[$44$]}{[$45$][$46$]}$である.
(2)第$6$試合もしくはそれ以前に$\mathrm{B}$,$\mathrm{C}$が優勝する確率は,それぞれ$\displaystyle \frac{[$47$][$48$]}{[$49$][$50$]}$,$\displaystyle \frac{[$51$]}{[$52$][$53$]}$である.

(3)$\mathrm{A}$が第$1$試合で勝ち,かつ$\mathrm{A}$が第$3n$試合もしくはそれ以前に優勝する確率を$n$の式で表すと,$\displaystyle \frac{[$54$]}{[$55$]} \left\{ [$56$]-\left( \frac{[$57$]}{[$58$]} \right)^n \right\}$である.ただし,$n$は自然数とする.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の$[ ]$にあてはまる最も適当な数または式などを記入しなさい.

(1)座標空間内の点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(2,\ -1,\ -1)$,$\mathrm{C}(-1,\ -2,\ -4)$,$\mathrm{D}(3,\ 2,\ 6)$に対して,三角形$\mathrm{ABC}$の重心を$\mathrm{M}$とし,三角形$\mathrm{ABD}$の重心を$\mathrm{N}$とする.このとき,点$\mathrm{M}$の座標は$[ア]$である.また,線分$\mathrm{MN}$を$4:3$に外分する点の座標は$[イ]$である.
(2)$\alpha=-1+2i$とする.$x=\alpha$が$2$次方程式$x^2+ax+b=0$の解であるような実数の組$(a,\ b)$は$(a,\ b)=[ウ]$である.また$\alpha^5+2 \alpha^4+3 \alpha^3+4 \alpha^2+5 \alpha$の値は$[エ]$である.
(3)関数$f(x)$が$\displaystyle f(x)=2x^2+3x+\int_0^{\frac{1}{2}} f(t) \, dt$を満たすとき,$f(x)=[オ]$である.
(4)$3$個のさいころを同時に投げるとき,以下の確率を求めなさい.

(i) 出る目の最大値が$4$以下である確率は$[カ]$である.
(ii) 出る目の最大値が$4$である確率は$[キ]$である.
(iii) 出る目の最大値が$4$であるとき,少なくとも$1$個のさいころの目が$1$である確率は$[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$2016$の正の約数は全部で$[ア]$個あり,それらの平均は$[イ]$である.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.座標平面上に$3$点$\mathrm{P}_0(1,\ 0)$,$\mathrm{P}_1(\cos \theta,\ \sin \theta)$,$\mathrm{P}_2(\cos 2\theta,\ \sin 2\theta)$がある.$x$軸に関して,点$\mathrm{P}_2$,$\mathrm{P}_1$と対称な点をそれぞれ$\mathrm{P}_3$,$\mathrm{P}_4$とし,さらに,四角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の面積を$S_1(\theta)$,三角形$\mathrm{P}_0 \mathrm{P}_1 \mathrm{P}_4$の面積を$S_2 (\theta)$とする.


(i) $\displaystyle S_1 \left( \frac{\pi}{3} \right)=[ウ]$である.

(ii) $\displaystyle \lim_{\theta \to +0} \frac{S_1(\theta)}{S_2(\theta)}=[エ]$である.

(iii) $S_1(\theta)$は$\cos \theta=[オ]$のとき最大値$[カ]$をとる.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$f(x)$は$2$次関数であり,$f(0)=f(1)=0$を満たすとする.

(1)$\displaystyle a=\frac{1}{2}f^{\prime\prime}(0)$とする.このとき,$f(x)$は$a$を用いて$f(x)=[キ]$と表される.
(2)定積分
\[ \int_0^1 \{(f^\prime(x)-x)^2-f(x)\} \, dx \]
の値が最も小さくなるのは$f(x)=[ク]$のときである.また,そのときの定積分の値は$[ケ]$である.
以下では,$f(x)=[ク]$,$m=[ケ]$とする.
(3)関数$h(x)$は$h(0)=h(1)=0$を満たし,その導関数$h^\prime(x)$は連続であるとする.さらに,$I$と$J$を


$\displaystyle I=\int_0^1 \{(f^\prime(x)+h^\prime(x)-x)^2-(f(x)+h(x))\} \, dx$

$\displaystyle J=\int_0^1 \{(f^\prime(x)-x)^2-f(x)\} \, dx+\int_0^1 (h^\prime(x))^2 \, dx$


で定める.このとき,等式
\[ I=J \]
を証明しなさい.
(4)関数$g(x)$は$g(0)=g(1)=0$を満たし,その導関数$g^\prime(x)$は連続であるとする.このとき,不等式
\[ \int_0^1 \{(g^\prime(x)-x)^2-g(x)\} \, dx \geqq m \]
を証明しなさい.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。