タグ「分数」の検索結果

27ページ目:全4648問中261問~270問を表示)
秋田大学 国立 秋田大学 2016年 第3問
$b>0$,$a=2 \sqrt{3}b$とし,原点を$\mathrm{O}$とする座標平面上の楕円$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$を$E$とする.楕円$E$上の点$\mathrm{P}(x,\ y)$の媒介変数表示は$x=a \cos \theta$,$y=b \sin \theta (0 \leqq \theta<2\pi)$で与えられる.次の問いに答えよ.

(1)点$\mathrm{P}$で楕円$E$と共通の接線をもつ円を考える.このような円のうち,不等式$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2} \geqq 1$の表す領域内にある円を$C$とする.円$C$の半径を$r(\theta)$とするとき,$C$の中心を$\theta$と$r(\theta)$を用いて表せ.
(2)$2d=11b$とし,$4$つの頂点が$(d,\ d)$,$(-d,\ d)$,$(-d,\ -d)$,$(d,\ -d)$である正方形$F$を考える.点$\mathrm{P}$が楕円$E$上を動くとき,$(1)$の円$C$の中心は正方形$F$の周上を動くとする.このとき,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$に対して,$C$の半径$r(\theta)$を求めよ.
(3)$(2)$の$r(\theta)$の$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$における最大値は$\displaystyle \frac{5 \sqrt{5}}{2}b$であることを示せ.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
福岡教育大学 国立 福岡教育大学 2016年 第3問
複素数$z$は実部が$\displaystyle \frac{\sqrt{5}-1}{4}$,虚部は正で$|z|=1$である.次の問いに答えよ.

(1)$\displaystyle \left( z+\frac{1}{z} \right)^2+\left( z+\frac{1}{z} \right)$の値を求めよ.

(2)$1+z+z^2+z^3+z^4$の値を求めよ.
(3)$z$の偏角$\theta$を求めよ.ただし$0 \leqq \theta<2\pi$とする.
福岡教育大学 国立 福岡教育大学 2016年 第4問
$a$は正の定数とする.関数$f(x)=ax-x \log x$の最大値が$1$であるとする.次の問いに答えよ.

(1)$a$の値を求めよ.
(2)曲線$y=f(x)$の接線のうち,傾きが$\displaystyle -\frac{1}{2}$であるものを求めよ.
(3)曲線$y=f(x)$と$x$軸および$(2)$で求めた接線によって囲まれる部分の面積を求めよ.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
山口大学 国立 山口大学 2016年 第1問
$n$を自然数とする.このとき,次の問いに答えなさい.

(1)$\alpha,\ \beta$を実数とし,
\[ f(x)=\frac{\alpha}{x-\alpha}-\frac{\beta}{x-\beta} \]
とする.$f(x)$の第$n$次導関数$f^{(n)}(x)$について,次の等式が成り立つことを,数学的帰納法によって証明しなさい.
\[ f^{(n)}(x)={(-1)}^n n! \left\{ \frac{\alpha}{{(x-\alpha)}^{n+1}}-\frac{\beta}{{(x-\beta)}^{n+1}} \right\} \]
(2)$b,\ c$を$b^2>4c$を満たす実数とし,
\[ h(x)=\frac{x}{x^2-bx+c} \]
とする.また,$h(x)$の第$n$次導関数$h^{(n)}(x)$に対し,$\displaystyle a_n=\frac{c^nh^{(n)}(0)}{n!}$とおく.

(i) $2$次方程式$x^2-bx+c=0$の解を$\alpha,\ \beta$とする.$a_n$を$\alpha,\ \beta,\ n$を用いて表しなさい.
(ii) $a_{n+2}-ba_{n+1}+ca_n=0$が成り立つことを示しなさい.
山口大学 国立 山口大学 2016年 第3問
座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$を頂点とする$\triangle \mathrm{OAB}$を考える.
\[ \alpha=x_1+y_1 i,\quad \beta=x_2+y_2 i \]
とするとき,次の問いに答えなさい.ただし,$i$は虚数単位である.

(1)$\triangle \mathrm{OAB}$の面積$S$は
\[ S=\frac{1}{4} |\alpha \overline{\beta|-\overline{\alpha} \beta} \]
で表されることを示しなさい.ただし,$\overline{\alpha}$,$\overline{\beta}$はそれぞれ$\alpha,\ \beta$と共役な複素数である.
(2)$k$を$2$より大きい定数とする.$\alpha,\ \beta$が
\[ \alpha^2+\beta^2=1 \quad \text{かつ} \quad |\alpha-1|+|\alpha+1|=k \]
を満たすとき,次の各値は$\alpha,\ \beta$によらず一定であることを示しなさい.

(i) $|\alpha|^2+|\beta|^2$
(ii) $\triangle \mathrm{OAB}$の面積$S$
山口大学 国立 山口大学 2016年 第4問
点$\mathrm{O}(0,\ 0,\ 0)$と点$\mathrm{A}(1,\ 0,\ 0)$に対して,点$\mathrm{B}(b_1,\ b_2,\ 0)$と点$\mathrm{C}(c_1,\ c_2,\ c_3)$は
\[ \angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COA}=\frac{3\pi}{5},\quad |\overrightarrow{\mathrm{OB|}}=|\overrightarrow{\mathrm{OC|}}=1 \]
を満たしているとする.$b_2>0$,$c_3>0$,また,$\displaystyle p=2 \cos \frac{\pi}{5}$とするとき,以下の問いに答えなさい.ただし,次の等式$①$を証明なしに用いてもよい.
\[ 4 \cos \frac{2\pi}{5} \cos \frac{\pi}{5}=1 \cdots\cdots ① \]

(1)等式$p^2=p+1$が成り立つことを示しなさい.
(2)$\displaystyle b_1=\frac{1-p}{2}$であることを示しなさい.
(3)点$\mathrm{E}(0,\ 0,\ 1)$に対して,$\overrightarrow{\mathrm{OC}}$を実数$k,\ l,\ m$を用いて
\[ \overrightarrow{\mathrm{OC}}=k \overrightarrow{\mathrm{OA}}+l \overrightarrow{\mathrm{OB}}+m \overrightarrow{\mathrm{OE}} \]
と表すとき,$\displaystyle m^2=\frac{2+p}{5}$であることを示しなさい.
(4)四面体$\mathrm{OABC}$の体積を$V$とする.$\displaystyle V=\frac{p}{12}$であることを示しなさい.
島根大学 国立 島根大学 2016年 第4問
$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.$xy$平面上の曲線$\displaystyle \frac{x^2}{\cos^2 \alpha}+\frac{y^2}{\sin^2 \alpha}=\frac{1}{\cos^2 \alpha}$の$x \geqq 0$,$y \geqq 0$の部分を$C(\alpha)$とし,曲線$C(\alpha)$と$y$軸,および直線$y=x$で囲まれた図形を$D(\alpha)$で表す.次の問いに答えよ.

(1)曲線$C(\alpha)$と直線$y=x$の交点の座標を求めよ.
(2)図形$D(\alpha)$の面積$S(\alpha)$を求めよ.
(3)図形$D(\alpha)$を$x$軸のまわりに$1$回転してできる立体の体積$V(\alpha)$を求めよ.
(4)$(2)$,$(3)$で求めた$S(\alpha)$,$V(\alpha)$に対して,$\displaystyle \lim_{\alpha \to +0} \frac{\{V(\alpha)\}^2}{\{S(\alpha)\}^3}$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。