タグ「分数」の検索結果

12ページ目:全4648問中111問~120問を表示)
群馬大学 国立 群馬大学 2016年 第3問
複素数平面の点$\mathrm{A}(1)$を中心とし,原点を通る円を$C$とする.また,$\mathrm{P}(z)$,$\mathrm{Q}(w)$を円$C$上を動く点とし,$\displaystyle 0<\arg{z}<\arg{w}<\frac{\pi}{2}$とする.さらに,$\displaystyle R=\frac{z(w-2)}{w(z-2)}$とおく.

(1)$R$は$R>1$を満たす実数であることを示せ.
(2)$\displaystyle \angle \mathrm{PAQ}=\frac{\pi}{3}$のときの$R$の最小値を求めよ.
群馬大学 国立 群馬大学 2016年 第4問
定数$a$は$0<a<1$とし,また$n$は正の整数とする.ただし,$n=1$のときは$(a-x)^{n-1}=1$とする.
\[ R_n=n \int_0^a \frac{(a-x)^{n-1}}{(1-x)^{n+1}} \, dx \]
とするとき,次の問いに答えよ.

(1)$R_n$を求めよ.
(2)無限級数$\displaystyle \sum_{n=1}^\infty R_n$の和を求めよ.
筑波大学 国立 筑波大学 2016年 第5問
$\triangle \mathrm{PQR}$において$\angle \mathrm{RPQ}=\theta$,$\displaystyle \angle \mathrm{PQR}=\frac{\pi}{2}$とする.点$\mathrm{P}_n (n=1,\ 2,\ 3,\ \cdots)$を次で定める.
\[ \mathrm{P}_1=\mathrm{P},\quad \mathrm{P}_2=\mathrm{Q},\quad \mathrm{P}_n \mathrm{P}_{n+2}=\mathrm{P}_n \mathrm{P}_{n+1} \]
ただし,点$\mathrm{P}_{n+2}$は線分$\mathrm{P}_n \mathrm{R}$上にあるものとする.実数$\theta_n (n=1,\ 2,\ 3,\ \cdots)$を
\[ \theta_n=\angle \mathrm{P}_{n+1} \mathrm{P}_n \mathrm{P}_{n+2} \quad (0<\theta_n<\pi) \]
で定める.

(1)$\theta_2,\ \theta_3$を$\theta$を用いて表せ.
(2)$\displaystyle \theta_{n+1}+\frac{\theta_n}{2} (n=1,\ 2,\ 3,\ \cdots)$は$n$によらない定数であることを示せ.
(3)$\displaystyle \lim_{n \to \infty} \theta_n$を求めよ.
(図は省略)
大阪大学 国立 大阪大学 2016年 第1問
$1$以上$6$以下の$2$つの整数$a,\ b$に対し,関数$f_n(x) (n=1,\ 2,\ 3,\ \cdots)$を次の条件(ア),(イ),(ウ)で定める.

(ア) $f_1(x)=\sin (\pi x)$
(イ) $\displaystyle f_{2n}(x)=f_{2n-1} \left( \frac{1}{a}+\frac{1}{b}-x \right) \qquad (n=1,\ 2,\ 3,\ \cdots)$
(ウ) $f_{2n+1}(x)=f_{2n}(-x) \qquad \qquad \qquad \ \,\!(n=1,\ 2,\ 3,\ \cdots)$

以下の問いに答えよ.

(1)$a=2,\ b=3$のとき,$f_5(0)$を求めよ.

(2)$a=1,\ b=6$のとき,$\displaystyle \sum_{k=1}^{100} (-1)^k f_{2k}(0)$を求めよ.

(3)$1$個のさいころを$2$回投げて,$1$回目に出る目を$a$,$2$回目に出る目を$b$とするとき,$f_6(0)=0$となる確率を求めよ.
群馬大学 国立 群馬大学 2016年 第3問
定数$a$は$0<a<1$とし,また$n$は正の整数とする.ただし,$n=1$のときは$(a-x)^{n-1}=1$とする.
\[ R_n=n \int_0^a \frac{(a-x)^{n-1}}{(1-x)^{n+1}} \, dx \]
とするとき,次の問いに答えよ.

(1)$R_1$と$R_2$を求めよ.
(2)$R_n$を求めよ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty R_n$の和を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第3問
$2$つの数列$\{\theta_n\},\ \{a_n\}$を漸化式

$\displaystyle \theta_1=\frac{\pi}{4},\quad \theta_{n+1}=\frac{\pi-\theta_n}{2} \quad (n=1,\ 2,\ 3,\ \cdots),$

$\displaystyle a_1=\sqrt{2},\quad a_{n+1}=\sqrt{|2-a_n|} \quad (n=1,\ 2,\ 3,\ \cdots)$

によって定義するとき,次の問いに答えよ.

(1)数列$\{\theta_n\}$の一般項を求めよ.また$\displaystyle 0<\theta_n<\frac{\pi}{2} (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(2)$\displaystyle \cos \theta_{n+1}=\sqrt{\frac{1-\cos \theta_n}{2}} (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(3)$2 \cos \theta_n=a_n (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(4)$\displaystyle \lim_{n \to \infty}a_n$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第4問
実数$a$は$\displaystyle 0<a<\frac{1}{2}$であるとする.関数$f(x)=\sqrt{x}-a \log x$について次の問いに答えよ.

(1)関数$y=f(x)$の増減,極値,グラフの凹凸および変曲点を調べて,そのグラフの概形をかけ.ただし$\displaystyle \lim_{x \to \infty} \frac{\log x}{\sqrt{x}}=0$となることを用いてよい.
(2)曲線$y=f(x)$上の点$(1,\ 1)$における接線を$\ell$とする.曲線$y=f(x)$は$\ell$と垂直な接線をもつことを示せ.
宮城教育大学 国立 宮城教育大学 2016年 第1問
次の問いに答えよ.

(1)整数$x,\ y$に対して$11x+7y$が$77$の倍数ならば,$x$は$7$の倍数であり$y$は$11$の倍数であることを示せ.
(2)整数$x,\ y$が次の$3$つの条件
\[ \sin \left( \frac{\pi}{7}x+\frac{\pi}{11}y \right)=0,\quad 10<x<34,\quad 10<y<30 \]
を満たすとき,$|x-y|$の最小値とそのときの$x,\ y$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第5問
点$\mathrm{P}$は$x$座標が正または$0$の範囲で放物線$\displaystyle y=1-\frac{x^2}{2}$上を動くとする.点$\mathrm{P}$における放物線$\displaystyle y=1-\frac{x^2}{2}$の法線を$m$として,法線$m$と$x$軸とのなす角を$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$とする.法線$m$上の点$\mathrm{Q}$は$\mathrm{PQ}=1$を満たし,不等式$\displaystyle y>1-\frac{x^2}{2}$の表す領域にあるとする.点$\mathrm{Q}$の軌跡を$C$とし,次の問いに答えよ.

(1)点$\mathrm{P},\ \mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)曲線$C$と$x$軸との交点の座標を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{\sin \theta} \, d\theta$を$t=\cos \theta$と置換することにより求めよ.

(4)不定積分$\displaystyle \int \frac{1}{\sin^2 \theta} \, d\theta$,$\displaystyle \int \frac{1}{\sin^4 \theta} \, d\theta$を$\displaystyle t=\frac{\cos \theta}{\sin \theta}$と置換することにより求めよ.

(5)曲線$C$と$x$軸および$y$軸により囲まれた図形の面積を求めよ.
信州大学 国立 信州大学 2016年 第4問
$n$を$2$以上の自然数とする.$n$人でじゃんけんをする.各人はグー,チョキ,パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする.勝者が$1$人に決まるまでじゃんけんを繰り返す.ただし,負けた人はその後のじゃんけんには参加しない.このとき,以下の問いに答えよ.

(1)$1$回目のじゃんけんで,勝者がただ$1$人に決まる確率を求めよ.
(2)$1$回目のじゃんけんで,あいこになる確率を求めよ.
(3)$n=5$のとき,ちょうど$2$回のじゃんけんで,勝者がただ$1$人に決まる確率を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。