タグ「円」の検索結果

3ページ目:全908問中21問~30問を表示)
信州大学 国立 信州大学 2016年 第5問
$\mathrm{P}_0$,$\mathrm{Q}_0$を複素数平面上の異なる点とする.自然数$k$に対して,平面上の点$\mathrm{P}_k$,$\mathrm{Q}_k$を以下の条件$(ⅰ)$,$(ⅱ)$を満たすものとして定める.

(i) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k-1}$を$\mathrm{P}_{k-1}$を中心として角$\theta$だけ回転させた線分が$\mathrm{P}_{k-1} \mathrm{Q}_{k}$となる.
(ii) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k}$を$\mathrm{Q}_{k}$を中心として角$\theta^\prime$だけ回転させた線分が$\mathrm{Q}_{k} \mathrm{P}_{k}$となる.

以下の問いに答えよ.

(1)$\mathrm{Q}_{k+2}=\mathrm{Q}_k$となるための,$\theta$と$\theta^\prime$に関する条件を求めよ.
(2)$0 \leqq \theta<2\pi$,$\theta=-\theta^\prime$,$|\mathrm{Q|_0 \mathrm{P}_0}=1$とする.$\mathrm{Q}_0$を中心とし,半径が$r$の円を$C$とする.$\mathrm{P}_{n-1}$は$C$の内部,$\mathrm{Q}_n$は$C$の外部にあるという.このとき,$r^2$が取り得る値の範囲を$n$と$\theta$を用いて表せ.
小樽商科大学 国立 小樽商科大学 2016年 第4問
曲線$\displaystyle y=-x^2+\frac{3}{2}$上の点$\mathrm{P}(x,\ y) (y \geqq 0)$から原点$\mathrm{O}$が中心で半径が$1$である円に$2$本の接線を引き,それらの接点を$\mathrm{A}$,$\mathrm{B}$とする.四角形$\mathrm{PAOB}$の面積の最大値$M$,最小値$m$とそれらを与える点$\mathrm{P}$の座標をそれぞれ求めよ.
高知大学 国立 高知大学 2016年 第4問
座標平面上に放物線$\displaystyle C:y=\frac{1}{6 \sqrt{3}}x^2$を考える.次の問いに答えよ.

(1)$C$と$2$点$\displaystyle \left( -3,\ \frac{\sqrt{3}}{2} \right)$,$\displaystyle \left( 3,\ \frac{\sqrt{3}}{2} \right)$で接している円の方程式を求めよ.
(2)$C$と$(1)$の円で囲まれる部分の面積を求めよ.
(3)$C$と点$\displaystyle \left( 3,\ \frac{\sqrt{3}}{2} \right)$で接し,$y$軸にも接している円の方程式を求めよ.
(4)$C$と$y$軸および$(3)$の円で囲まれる部分の面積を求めよ.
鳥取大学 国立 鳥取大学 2016年 第2問
$xy$平面上に$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(-2,\ 0)$と円$C:x^2+y^2-2y=0$,および直線$\ell:y=kx+2k$がある.ただし,$k$は実数とする.

(1)点$\mathrm{A}$と直線$\ell$の距離を$k$を用いて表せ.
(2)直線$\ell$と円$C$が異なる$2$点で交わるように,$k$の値の範囲を求めよ.
(3)直線$\ell$と円$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.線分$\mathrm{PQ}$について,$\mathrm{PQ}=2 \sqrt{k}$が成り立つとき,$k$の値を求めよ.
(4)$(3)$で求めた$k$に対する直線$\ell$と直線$\mathrm{AB}$のなす角を$\theta$とする.このとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0 \leqq \theta<\frac{\pi}{4}$とする.
弘前大学 国立 弘前大学 2016年 第3問
円$x^2+y^2=1$上の点$\mathrm{P}$における接線を$\ell$とする.点$\mathrm{A}(6,\ 0)$を通り,$\ell$に垂直な直線が,$\ell$と交わる点を$\mathrm{Q}$とする.$\mathrm{AQ} \cdot \mathrm{PQ}$の最大値を求めよ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の放物線$\displaystyle C:y=\frac{1}{2}x^2$に対し,次の問に答えよ.

(1)半径$r$の円が放物線$C$と$2$点で接するとき,円の中心と$2$つの接点の座標を$r$を用いて表せ.
(2)点$(0,\ 1)$を中心とする半径$1$の円を$C_1$とする.$n=2,\ 3,\ 4,\ \cdots$に対し円$C_n$を,放物線$C$と$2$点で接し,円$C_{n-1}$と外接するものとする.このとき,円$C_n$の半径を$n$を用いて表せ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の放物線$\displaystyle C:y=\frac{1}{2}x^2$に対し,次の問に答えよ.

(1)半径$r$の円が放物線$C$と$2$点で接するとき,円の中心と$2$つの接点の座標を$r$を用いて表せ.
(2)点$(0,\ 1)$を中心とする半径$1$の円を$C_1$とする.$n=2,\ 3,\ 4,\ \cdots$に対し円$C_n$を,放物線$C$と$2$点で接し,円$C_{n-1}$と外接するものとする.このとき,円$C_n$の半径を$n$を用いて表せ.
大分大学 国立 大分大学 2016年 第3問
中心が原点$\mathrm{O}$で半径が$a$の定円$C_1$上を,半径$\displaystyle \frac{a}{4}$の円$C_2$が内接しながらすべることなく回転する.円$C_2$上の点$\mathrm{P}$は最初に点$\mathrm{A}(a,\ 0)$にあるとする.円$C_2$の中心を$\mathrm{B}$とするとき,以下の問いに答えなさい.

(1)$\angle \mathrm{AOB}=\theta$とする.$\overrightarrow{\mathrm{BP}}$を$a,\ \theta$で表しなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$a,\ \theta$で表しなさい.
(3)$0 \leqq \theta \leqq 2\pi$のとき,動点$\mathrm{P}$が移動する距離を求めなさい.
琉球大学 国立 琉球大学 2016年 第2問
座標平面上の原点$\mathrm{O}$,$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$,$\displaystyle \mathrm{Q} \left( -\frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$の$3$点を通る放物線$y=ax^2+bx+c$を$C_1$とし,原点$\mathrm{O}$を中心とする半径$1$の円を$C_2$とする.次の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)放物線$C_1$と線分$\mathrm{PQ}$で囲まれた図形の面積を求めよ.
(3)放物線$C_1$と円$C_2$で囲まれた図形のうち,放物線$C_1$の上側の部分の面積を求めよ.
鳥取大学 国立 鳥取大学 2016年 第2問
$xy$平面上に$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(-2,\ 0)$と円$C:x^2+y^2-2y=0$,および直線$\ell:y=kx+2k$がある.ただし,$k$は実数とする.

(1)点$\mathrm{A}$と直線$\ell$の距離を$k$を用いて表せ.
(2)直線$\ell$と円$C$が異なる$2$点で交わるように,$k$の値の範囲を求めよ.
(3)直線$\ell$と円$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとする.線分$\mathrm{PQ}$について,$\mathrm{PQ}=2 \sqrt{k}$が成り立つとき,$k$の値を求めよ.
(4)$(3)$で求めた$k$に対する直線$\ell$と直線$\mathrm{AB}$のなす角を$\theta$とする.このとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0 \leqq \theta<\frac{\pi}{4}$とする.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。