タグ「任意」の検索結果

1ページ目:全118問中1問~10問を表示)
神戸大学 国立 神戸大学 2016年 第4問
約数,公約数,最大公約数を次のように定める.
\begin{itemize}
$2$つの整数$a,\ b$に対して,$a=bk$をみたす整数$k$が存在するとき,$b$は$a$の約数であるという.
$2$つの整数に共通の約数をそれらの公約数という.
少なくとも一方が$0$でない$2$つの整数の公約数の中で最大のものをそれらの最大公約数という.
\end{itemize}
以下の問に答えよ.

(1)$a,\ b,\ c,\ p$は$0$でない整数で$a=pb+c$をみたしているとする.

(i) $a=18$,$b=30$,$c=-42$,$p=2$のとき,$a$と$b$の公約数の集合$S$,および$b$と$c$の公約数の集合$T$を求めよ.
(ii) $a$と$b$の最大公約数を$M$,$b$と$c$の最大公約数を$N$とする.$M$と$N$は等しいことを示せ.ただし,$a,\ b,\ c,\ p$は$0$でない任意の整数とする.

(2)自然数の列$\{a_n\}$を
\[ a_{n+2}=6a_{n+1}+a_n (n=1,\ 2,\ \cdots),\quad a_1=3,\quad a_2=4 \]
で定める.

(i) $a_{n+1}$と$a_n$の最大公約数を求めよ.
(ii) $a_{n+4}$を$a_{n+2}$と$a_n$を用いて表せ.
(iii) $a_{n+2}$と$a_n$の最大公約数を求めよ.
高知大学 国立 高知大学 2016年 第4問
自然数$n$と多項式$f(x)$に対して,$\displaystyle a_n=\int_{-1}^1 x^{n-1}f(x) \, dx$で与えられる数列$\{a_n\}$を考える.このとき,次の問いに答えよ.

(1)$f(x)$が$2$次式で$a_1=0$のとき,$a_3 \neq 0$を示せ.
(2)$f(x)$が$2$次式で$a_1=1$,$a_2=0$,$\displaystyle a_3=\frac{3}{5}$のとき,一般項$a_n$を求めよ.
(3)$f(x)$を$k$次式とする.$f(x)$の係数の絶対値のうち最大なものを$M$とおくとき,任意の自然数$n$に対して,$\displaystyle |a_{2n|} \leqq \frac{(k+1)M}{2n+1}$が成り立つことを示せ.
(4)任意の多項式$f(x)$に対して$\displaystyle \lim_{n \to \infty}a_n=0$が成り立つことを示せ.
早稲田大学 私立 早稲田大学 2016年 第1問
正の整数$m,\ n$に対して$f(m,\ n)$が次の等式を満たすように定められている.
\[ \left\{ \begin{array}{l}
f(1,\ 1)=1,\quad f(2,\ 2)=6,\quad f(3,\ 3)=20 \\
f(m,\ n)=2f(m-1,\ n) \quad (m \geqq 2) \phantom{\frac{[ ]}{2}} \\
f(m,\ n)+3f(m,\ n-2)=3f(m,\ n-1)+f(m,\ n-3) \quad (n \geqq 4) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
次の問に答えよ.

(1)$f(m,\ 1)$および$f(1,\ n)$をそれぞれ$m,\ n$の式で表せ.
(2)$f(6,\ 32)$の値を求めよ.
(3)任意の正の整数$l$に対して,$f(m,\ n)=l$を満たす正の整数$m,\ n$が存在することを示せ.
北里大学 私立 北里大学 2016年 第1問
次の文中の$[ア]$~$[ヌ]$にあてはまる最も適切な数値を答えなさい.

(1)平面上のベクトル$\overrightarrow{a}$と$\overrightarrow{b}$が
\[ |\overrightarrow{a|}=2,\quad |\overrightarrow{b|}=\sqrt{3},\quad |\overrightarrow{a|-2 \overrightarrow{b}}=2 \sqrt{2} \]
を満たすとき$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.また$|\overrightarrow{a|+t \overrightarrow{b}}$を最小にする実数$t$の値は$\displaystyle \frac{[イ]}{[ウ]}$である.

(2)$1$次不定方程式$17x+59y=1$のすべての整数解は,$n$を任意の整数として
\[ x=59n+[エ],\quad y=-17n+[オ] \]
である.
(3)$i$を虚数単位とし,$z=-1+\sqrt{3}i$とすると,
\[ z^2=[カ]+[キ] \sqrt{3}i,\quad z^3=[ク]+[ケ] \sqrt{3}i \]
である.また,$z^n$を$n$について$1$から$9$まで足し合わせると,
\[ \sum_{n=1}^9 z^n=[コ][サ] \left( [シ]+[ス] \sqrt{3}i \right) \]
となる.
(4)$\displaystyle \log_{15}900=[セ]+\frac{[ソ]}{\log_2 [タ]+\log_2 [チ]}$である.

(5)区間$[0,\ \pi]$を定義域とする$2$つの関数$f_1(x)=\cos (x+\alpha)+d$と$f_2(x)=\cos (x-\alpha)-d$を考える.
$\displaystyle \alpha=\frac{\pi}{4},\ d=\frac{1}{4}$のとき,これら$2$つの関数のグラフの交点の$x$座標は
\[ \sin x=\frac{\sqrt{[ツ]}}{[テ]} \]
を満足する.
また,$\displaystyle \alpha=\frac{\pi}{6}$のとき,$\displaystyle d=\frac{[ト]}{[ナ]}$であればこれら$2$つの関数のグラフは,$\displaystyle x=\frac{[ニ]}{[ヌ]} \pi$で接している.
東京医科大学 私立 東京医科大学 2016年 第1問
次の問いに答えよ.

(1)任意の正の数$t$に対して,座標平面上の$3$点$\mathrm{P}_t(3-t,\ 6+2t)$,$\mathrm{O}(0,\ 0)$,$\mathrm{A}(3,\ 6)$を頂点とする三角形$\mathrm{P}_t \mathrm{OA}$を考える.$\angle \mathrm{P}_t \mathrm{OA}=\theta_t$とすれば,
\[ \lim_{t \to \infty} \cos \theta_t=\frac{[ア]}{[イ]} \]
である.
(2)$a$を正の定数とする.$x$についての$2$次方程式$x^2+ax+4a=0$の$1$つの解が他の解の$4$倍であるとき,
\[ a=[ウエ] \]
である.
玉川大学 私立 玉川大学 2016年 第2問
次の$[ ]$を埋めよ.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$であるとする.$\mathrm{CA}=x$とおくとき,
\[ \cos \angle \mathrm{BAC}=\frac{[ア]+x^2}{[イ]x} \]
である.$\angle \mathrm{BAC}$の最大は,${[ウエ]}^\circ$であり,このとき,$x=[オ]$である.
(2)$1 \leqq x \leqq 100$とする.このとき,方程式$2x+3y=31$をみたす整数の組$(x,\ y)$の個数は,$[カキ]$個で,$x$が最小となる解は,$(x,\ y)=([ク],\ [ケ])$である.
(3)方程式
\[ 2 \sin^3 x+\cos 2x-\sin x=0 \]
を解くと,$n$を任意の整数として
\[ x=\frac{\pi}{[コ]}+2n \pi,\ \frac{\pi}{[サ]}+\frac{1}{[シ]}n \pi \]
となる.
(4)$2$つのベクトルを$\overrightarrow{a}=(t,\ -1)$,$\overrightarrow{b}=(t+\sqrt{2}-1,\ \sqrt{2})$とする.このとき,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が鋭角になる条件は,
\[ t>[ス],\quad t<-\sqrt{[セ]} \]
であり,鈍角になる条件は,
\[ -\sqrt{[ソ]}<t<[タ] \]
である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n^2+n$で表されるとき,
\[ a_n=[チ]n \]
である.また,
\[ \sum_{k=1}^n (a_k+1)^2=\frac{n}{[ツ]} ([テ]n^2+[トナ]n+[ニヌ]) \]
である.
香川大学 国立 香川大学 2015年 第5問
(旧課程履修者)行列$A,\ E$を$A=\left( \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とし,$a,\ b$を$a^2+b^2 \neq 0$を満たす実数とする.このとき,次の問に答えよ.

(1)$A^2$を求めよ.
(2)$X=aA+bE$の逆行列$X^{-1}$を求めよ.
(3)$B^2=-E$を満たす任意の$2$次の正方行列$B$について,$(aB+bE)(-aB+bE)=sB+tE$となる実数$s,\ t$を$a,\ b$を用いて表せ.
(4)$(3)$の$B$に対して$Y=aB+bE$とおくとき,$pB+qE$が$Y$の逆行列$Y^{-1}$と等しくなるような実数$p,\ q$を$a,\ b$を用いて表せ.
千葉大学 国立 千葉大学 2015年 第4問
$0$以上の整数$n$に対して,整式$T_n(x)$を
\[ T_0(x)=1,\quad T_1(x)=x,\quad T_n(x)=2xT_{n-1}(x)-T_{n-2}(x) \quad (n=2,\ 3,\ 4,\ \cdots) \]
で定める.このとき,以下の問いに答えよ.

(1)$0$以上の任意の整数$n$に対して
\[ \cos (n\theta)=T_n(\cos \theta) \]
となることを示せ.
(2)定積分
\[ \int_{-1}^1 T_n(x) \, dx \]
の値を求めよ.
福島大学 国立 福島大学 2015年 第5問
実数$x$をこえない最大の整数を$[x]$とし,$\langle x \rangle=x-[x]$とする.また,$a$を定数として次の方程式を考える.
\[ 4 \langle x \rangle^2-\langle 2x \rangle-a=0 \]
ただし,$\langle x \rangle^2$は$\langle x \rangle$の二乗を表すとする.

(1)$x=1.7$のとき$\langle x \rangle$および$\langle 2x \rangle$を求めなさい.
(2)$\alpha$が上の方程式の解ならば,任意の整数$n$について$\alpha+n$も解であることを示しなさい.
(3)上の方程式が解を持つような実数$a$の範囲を求めなさい.
宇都宮大学 国立 宇都宮大学 2015年 第4問
$u$を任意の実数とするとき,次の問いに答えよ.

(1)座標平面上の点$\mathrm{P}(u,\ u-1)$を通り,曲線$y=x^2$に接する直線は,ちょうど$2$本あることを示せ.
(2)$(1)$における$2$直線と曲線$y=x^2$の接点を,それぞれ$\mathrm{A}(\alpha,\ \alpha^2)$,$\mathrm{B}(\beta,\ \beta^2)$とするとき,$\alpha$と$\beta$をそれぞれ$u$の式で表せ.ただし,$\alpha<\beta$とする.
(3)$(1)$における$2$直線と曲線$y=x^2$で囲まれた図形の面積を$S$とするとき,$S$を$u$の式で表せ.
(4)$(3)$で求めた面積$S$の最小値を求めよ.
スポンサーリンク

「任意」とは・・・

 まだこのタグの説明は執筆されていません。