タグ「交点」の検索結果

13ページ目:全1364問中121問~130問を表示)
東北学院大学 私立 東北学院大学 2016年 第1問
円に内接する四角形$\mathrm{ABCD}$において
\[ \mathrm{AB}=3,\quad \mathrm{BC}=\mathrm{CD}=4,\quad \mathrm{DA}=5 \]
とするとき,次の問いに答えよ.

(1)$\angle \mathrm{CDA}=\theta$とするとき,$\cos \theta$の値を求めよ.
(2)対角線$\mathrm{AC}$の長さを求めよ.
(3)四角形$\mathrm{ABCD}$の面積$S$を求めよ.
(4)対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{P}$とするとき,面積比$\triangle \mathrm{ABP}:\triangle \mathrm{APD}$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$l \geqq 1$を定数とし,座標空間の点$\mathrm{A}$は平面$z=-1$上を,点$\mathrm{B}$は平面$z=1$上を,$\mathrm{OA}=\mathrm{OB}=l$をみたしつつ動くとする.ただし$\mathrm{O}$は座標空間の原点である.

(1)$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるためには$l \geqq [あ]$であることが必要十分である.また,点$\mathrm{A}$,$\mathrm{B}$から$xy$平面へ垂線を下ろし,それぞれと$xy$平面との交点を$\mathrm{A}^\prime,\ \mathrm{B}^\prime$とするとき,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$かつ$\displaystyle \cos \angle \mathrm{A}^\prime \mathrm{OB}^\prime=\frac{2}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるのは$l=[い]$のときである.
(2)$l=[い]$のとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を
\[ \mathrm{A}(0,[う],-1),\quad \mathrm{B}([え],[お],1),\quad \mathrm{C}([か],[き],[く]) \]
とすると$\mathrm{OABC}$は正四面体をなす.ただし$[う],\ [え],\ [く]$はいずれも正とする.
また,正四面体$\mathrm{OABC}$を平面$y+3z=t$で切ったときの切り口は$[け]<t<[こ]$のとき四角形となる.その四角形は上底と下底の和が$[さ]$,高さが$[し]$の台形であり,その面積は$t=[す]$のとき最大値$[せ]$をとる.
北里大学 私立 北里大学 2016年 第1問
次の文中の$[ア]$~$[ヌ]$にあてはまる最も適切な数値を答えなさい.

(1)平面上のベクトル$\overrightarrow{a}$と$\overrightarrow{b}$が
\[ |\overrightarrow{a|}=2,\quad |\overrightarrow{b|}=\sqrt{3},\quad |\overrightarrow{a|-2 \overrightarrow{b}}=2 \sqrt{2} \]
を満たすとき$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.また$|\overrightarrow{a|+t \overrightarrow{b}}$を最小にする実数$t$の値は$\displaystyle \frac{[イ]}{[ウ]}$である.

(2)$1$次不定方程式$17x+59y=1$のすべての整数解は,$n$を任意の整数として
\[ x=59n+[エ],\quad y=-17n+[オ] \]
である.
(3)$i$を虚数単位とし,$z=-1+\sqrt{3}i$とすると,
\[ z^2=[カ]+[キ] \sqrt{3}i,\quad z^3=[ク]+[ケ] \sqrt{3}i \]
である.また,$z^n$を$n$について$1$から$9$まで足し合わせると,
\[ \sum_{n=1}^9 z^n=[コ][サ] \left( [シ]+[ス] \sqrt{3}i \right) \]
となる.
(4)$\displaystyle \log_{15}900=[セ]+\frac{[ソ]}{\log_2 [タ]+\log_2 [チ]}$である.

(5)区間$[0,\ \pi]$を定義域とする$2$つの関数$f_1(x)=\cos (x+\alpha)+d$と$f_2(x)=\cos (x-\alpha)-d$を考える.
$\displaystyle \alpha=\frac{\pi}{4},\ d=\frac{1}{4}$のとき,これら$2$つの関数のグラフの交点の$x$座標は
\[ \sin x=\frac{\sqrt{[ツ]}}{[テ]} \]
を満足する.
また,$\displaystyle \alpha=\frac{\pi}{6}$のとき,$\displaystyle d=\frac{[ト]}{[ナ]}$であればこれら$2$つの関数のグラフは,$\displaystyle x=\frac{[ニ]}{[ヌ]} \pi$で接している.
立教大学 私立 立教大学 2016年 第3問
実数$c$を$\displaystyle c<\frac{3}{2}$とし,$f(x)=(x-4)(x^2-3x-c^2+3c)$とする.このとき,次の問いに答えよ.

(1)曲線$y=f(x)$と$x$軸が異なる$3$点で交わり,それら$3$つの交点の$x$座標がすべて正となるときの$c$の値の範囲を求めよ.
(2)$(1)$の$3$つの交点の$x$座標を小さい順に並べると等差数列となるときの$c$の値を求めよ.また,このときの交点の$x$座標をすべて求めよ.
(3)$(1)$の$3$つの交点の$x$座標を小さい順に並べると等比数列となるときの$c$の値を求めよ.また,このときの交点の$x$座標をすべて求めよ.
(4)$(2)$の場合の曲線$y=f(x)$を$C_1$とし,$(2)$の場合の曲線$y=f(x)$を$C_2$とする.曲線$C_1,\ C_2$と,$y$軸で囲まれた図形の面積を求めよ.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$x,\ y$を実数とするとき,座標平面上の点$\mathrm{P}(3 \sin x+5 \sin y,\ 3 \cos x+5 \cos y)$と原点との距離の最小値は$[ア]$であり,最大値は$[イ]$である.
(2)$2016x+401y=1$を満たす整数$x,\ y$で$0<x<401$となるのは,$x=[ウ]$,$y=[エ]$のときである.
(3)$0 \leqq x \leqq 1$のとき,関数$f(x)=\sqrt{x}+2 \sqrt{1-x}$は,$x=[オ]$において最大値$[カ]$をとる.
(4)$\mathrm{O}$を原点とする座標空間内の$2$点$\mathrm{A}(4,\ -1,\ 3)$,$\mathrm{B}(2,\ 1,\ 1)$を通る直線と$xy$平面の交点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標は$[キ]$である.また,直線$\mathrm{AB}$と直線$\mathrm{OC}$のなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とすると,$\cos \theta=[ク]$である.
(5)袋の中に赤玉と白玉が合わせて$8$個入っている.この袋の中から$2$個の玉を同時に取り出すとき,取り出した玉が両方とも白である確率が$\displaystyle \frac{5}{14}$である.このとき,袋の中の白玉は$[ケ]$個である.また,取り出した玉を元に戻し,この袋からあらたに$2$個の玉を同時に取り出すとき,赤玉と白玉が$1$個ずつである確率は$[コ]$である.
津田塾大学 私立 津田塾大学 2016年 第3問
$a$を正の定数とし,放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$における接線を$\ell_1$とする.ただし,$t>0$である.

(1)$\ell_1$と$x$軸との交点を通り$\ell_1$と直交する直線を$\ell_2$とする.$\ell_2$は$\mathrm{P}$によらない定点を通ることを示せ.
(2)$x$軸に関して$\ell_1$と対称な直線を$\ell_3$とする.$\ell_3$と$C$の$2$つの交点のうち$x$座標が大きい方を$\mathrm{Q}$,$\mathrm{Q}$から$x$軸に下ろした垂線の足を$\mathrm{R}$とするとき,$C$と直線$\mathrm{QR}$と$x$軸とで囲まれた図形の面積を求めよ.
青山学院大学 私立 青山学院大学 2016年 第5問
関数$y=xe^{-x} (x \geqq 0)$のグラフにおいて,$y$座標の値が最大となる点を$\mathrm{A}$,変曲点を$\mathrm{B}$とし,点$\mathrm{B}$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{C}$とする.

(1)点$\mathrm{A}$,$\mathrm{B}$の座標を求め,関数$y=xe^{-x} (x \geqq 0)$のグラフをかけ.ただし,$\displaystyle \lim_{x \to \infty} xe^{-x}=0$であることを用いてよい.
(2)線分$\mathrm{OA}$,$\mathrm{OB}$および関数$y=xe^{-x}$のグラフの点$\mathrm{A}$から点$\mathrm{B}$までの部分で囲まれた図形の面積$S_1$を求めよ.ただし,$\mathrm{O}$は原点である.
(3)$S_1$と三角形$\mathrm{OBC}$の面積$S_2$の大小を比較せよ.
京都薬科大学 私立 京都薬科大学 2016年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.ただし,$[コ]$においては,$[コ]$につづくかっこ内の選択肢から適切なものを$\mathrm{A}$か$\mathrm{B}$の記号で答えよ.

(1)$2$つの円$x^2+y^2=1$,$(x-2)^2+y^2=R^2 (R>0)$が異なる$2$つの交点を持つのは$[ア]<R<[イ]$が成立するときである.このとき,$\mathrm{O}(0,\ 0)$,$\mathrm{A}(2,\ 0)$とおき,交点の$1$つを$\mathrm{P}$とすると
\[ \cos \angle \mathrm{OPA}=[ウ] \]
が成立するので,$\angle \mathrm{OPA}={90}^\circ$となるのは$R=[エ]$のときである.
(2)$x$の$2$次方程式$x^2-4x \sin \theta+4+\sqrt{2}-(2+2 \sqrt{2}) \cos \theta=0 (0 \leqq \theta<2\pi)$が異なる$2$つの実数解を持つような$\theta$の範囲は,$[オ]<\theta<[カ]$および$[キ]<\theta<[ク]$である.
(3)$p$と$q$を正の整数とするとき,$x$の$2$次方程式$x^2-2 \sqrt{p}x+q=0$は異なる$2$つの実数解を持つとする.これらの解を$\alpha$と$\beta$で表すとき,$r=|\alpha-\beta|$と$p,\ q$の間には,関係式$r^2=[ケ]$が成り立つ.したがって,もし$r$が整数ならば,$r$は$[コ]$($\mathrm{A}:$偶数,$\mathrm{B}:$奇数)である.このとき,$2$次方程式の解を$q$と$r$を用いてあらわすと$x=[サ] \pm [シ]$となる.
(4)$1$つのサイコロを$2$回続けて投げるとき,$1$回目に出る目を$a$,$2$回目に出る目を$b$とし,$x$の$2$次方程式$x^2-ax+b=0 \ \cdots\ ①$を考える.$2$次方程式$①$が実数解を持たない確率は$[ス]$である.$2$次方程式$①$が実数解を持つとき,それが重解である条件付き確率は$[セ]$である.$2$次方程式$①$の解が$2$つとも自然数になる確率は$[ソ]$である.
(5)$3^{10}={10}^x$となる$x$は$[タ]$である.よって,$3^{10}$は$[チ]$桁の$10$進数である.同様の考え方で$5^{10}$を$9$進数で表すと,$[ツ]$桁である.ただし,$\log_{10}3=0.4771$,$\log_{10}5=0.6990$とする.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第5問
放物線$y=x^2-2x+a$と直線$y=bx+5$の交点の$1$つが$(3,\ 2)$のとき,次の設問に答えよ.

(1)定数$a,\ b$の値を求めよ.
(2)もう$1$つの交点の座標を求めよ.
(3)放物線と直線で囲まれた図形の面積を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第5問
放物線$\displaystyle y=-\frac{x^2}{3}+2x+9$について,次の設問に答えよ.

(1)頂点および$x$軸,$y$軸との交点の座標を求め,放物線の概形を描け.
(2)第$1$象限の放物線と$x$軸,$y$軸とで囲まれた図形の面積を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。