タグ「中心」の検索結果

2ページ目:全588問中11問~20問を表示)
九州工業大学 国立 九州工業大学 2016年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円を$C_1$とする.円$C_1$に外接しながら,半径$1$の円$C_2$がすべることなく回転する.円$C_2$の中心を$\mathrm{P}$とし,円$C_2$上の点$\mathrm{Q}$は最初,$x$軸上の点$\mathrm{A}(3,\ 0)$にあるものとする.半直線$\mathrm{PQ}$上で点$\mathrm{P}$からの距離が$2$の点を$\mathrm{R}$とし,$\mathrm{OP}$が$x$軸の正の向きとなす角を$\theta$とする.$C_2$が回転して$\theta$が$0$から$2\pi$まで変化するとき,点$\mathrm{R}$が描く曲線を$C$とする.曲線$C$の概形を図$1$に示す.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$を通り$x$軸と平行な直線を$\ell$とする.直線$\ell$と線分$\mathrm{PR}$のなす角$\alpha$を,$\theta$を用いて表せ.また,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(3)曲線$C$と$x$軸の共有点の座標をすべて求めよ.
(4)曲線$C$と$y$軸の共有点の座標をすべて求めよ.
(5)点$\mathrm{R}$の$x$座標が最小となるときの点$\mathrm{R}$の座標をすべて求めよ.
(6)曲線$C$と$x$軸,$y$軸に囲まれた図$2$の斜線部分の面積を求めよ.
筑波大学 国立 筑波大学 2016年 第2問
$xy$平面の直線$y=(\tan 2 \theta)x$を$\ell$とする.ただし$\displaystyle 0<\theta<\frac{\pi}{4}$とする.図で示すように,円$C_1$,$C_2$を以下の$(ⅰ)$~$\tokeishi$で定める.

(i) 円$C_1$は直線$\ell$および$x$軸の正の部分と接する.
(ii) 円$C_1$の中心は第$1$象限にあり,原点$\mathrm{O}$から中心までの距離$d_1$は$\sin 2\theta$である.
(iii) 円$C_2$は直線$\ell$,$x$軸の正の部分,および円$C_1$と接する.
\mon[$\tokeishi$] 円$C_2$の中心は第$1$象限にあり,原点$\mathrm{O}$から中心までの距離$d_2$は$d_1>d_2$を満たす.

円$C_1$と円$C_2$の共通接線のうち,$x$軸,直線$\ell$と異なる直線を$m$とし,直線$m$と直線$\ell$,$x$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.

(1)円$C_1,\ C_2$の半径を$\sin \theta,\ \cos \theta$を用いて表せ.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{4}$の範囲を動くとき,線分$\mathrm{PQ}$の長さの最大値を求めよ.
(3)$(2)$の最大値を与える$\theta$について直線$m$の方程式を求めよ.
(図は省略)
筑波大学 国立 筑波大学 2016年 第3問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき等式
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a}=1 \]
が成り立つとする.$t$は実数の定数で,$0<t<1$を満たすとする.線分$\mathrm{OA}$を$t:1-t$に内分する点を$\mathrm{P}$とし,線分$\mathrm{BC}$を$t:1-t$に内分する点を$\mathrm{Q}$とする.また,線分$\mathrm{PQ}$の中点を$\mathrm{M}$とする.

(1)$\overrightarrow{\mathrm{OM}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$と$t$を用いて表せ.
(2)線分$\mathrm{OM}$と線分$\mathrm{BM}$の長さが等しいとき,線分$\mathrm{OB}$の長さを求めよ.
(3)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が点$\mathrm{M}$を中心とする同一球面上にあるとする.このとき,$\triangle \mathrm{OAB}$と$\triangle \mathrm{OCB}$は合同であることを示せ.
筑波大学 国立 筑波大学 2016年 第6問
複素数平面上を動く点$z$を考える.次の問いに答えよ.

(1)等式$|z-1|=|z+1|$を満たす点$z$の全体は虚軸であることを示せ.
(2)点$z$が原点を除いた虚軸上を動くとき,$\displaystyle w=\frac{z+1}{z}$が描く図形は直線から$1$点を除いたものとなる.この図形を描け.
(3)$a$を正の実数とする.点$z$が虚軸上を動くとき,$\displaystyle w=\frac{z+1}{z-a}$が描く図形は円から$1$点を除いたものとなる.この円の中心と半径を求めよ.
大阪大学 国立 大阪大学 2016年 第3問
座標平面において,原点$\mathrm{O}$を中心とする半径$r$の円と放物線$y=\sqrt{2}(x-1)^2$は,ただ$1$つの共有点$(a,\ b)$をもつとする.

(1)$a,\ b,\ r$の値をそれぞれ求めよ.
(2)連立不等式
\[ a \leqq x \leqq 1,\quad 0 \leqq y \leqq \sqrt{2}(x-1)^2,\quad x^2+y^2 \geqq r^2 \]
の表す領域を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
群馬大学 国立 群馬大学 2016年 第3問
複素数平面の点$\mathrm{A}(1)$を中心とし,原点を通る円を$C$とする.また,$\mathrm{P}(z)$,$\mathrm{Q}(w)$を円$C$上を動く点とし,$\displaystyle 0<\arg{z}<\arg{w}<\frac{\pi}{2}$とする.さらに,$\displaystyle R=\frac{z(w-2)}{w(z-2)}$とおく.

(1)$R$は$R>1$を満たす実数であることを示せ.
(2)$\displaystyle \angle \mathrm{PAQ}=\frac{\pi}{3}$のときの$R$の最小値を求めよ.
信州大学 国立 信州大学 2016年 第5問
$\mathrm{P}_0$,$\mathrm{Q}_0$を複素数平面上の異なる点とする.自然数$k$に対して,平面上の点$\mathrm{P}_k$,$\mathrm{Q}_k$を以下の条件$(ⅰ)$,$(ⅱ)$を満たすものとして定める.

(i) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k-1}$を$\mathrm{P}_{k-1}$を中心として角$\theta$だけ回転させた線分が$\mathrm{P}_{k-1} \mathrm{Q}_{k}$となる.
(ii) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k}$を$\mathrm{Q}_{k}$を中心として角$\theta^\prime$だけ回転させた線分が$\mathrm{Q}_{k} \mathrm{P}_{k}$となる.

以下の問いに答えよ.

(1)$\mathrm{Q}_{k+2}=\mathrm{Q}_k$となるための,$\theta$と$\theta^\prime$に関する条件を求めよ.
(2)$0 \leqq \theta<2\pi$,$\theta=-\theta^\prime$,$|\mathrm{Q|_0 \mathrm{P}_0}=1$とする.$\mathrm{Q}_0$を中心とし,半径が$r$の円を$C$とする.$\mathrm{P}_{n-1}$は$C$の内部,$\mathrm{Q}_n$は$C$の外部にあるという.このとき,$r^2$が取り得る値の範囲を$n$と$\theta$を用いて表せ.
小樽商科大学 国立 小樽商科大学 2016年 第4問
曲線$\displaystyle y=-x^2+\frac{3}{2}$上の点$\mathrm{P}(x,\ y) (y \geqq 0)$から原点$\mathrm{O}$が中心で半径が$1$である円に$2$本の接線を引き,それらの接点を$\mathrm{A}$,$\mathrm{B}$とする.四角形$\mathrm{PAOB}$の面積の最大値$M$,最小値$m$とそれらを与える点$\mathrm{P}$の座標をそれぞれ求めよ.
弘前大学 国立 弘前大学 2016年 第4問
$2$つの複素数$w,\ z$が$\displaystyle w=\frac{iz}{z-2}$を満たしているとする.ただし,$i$は虚数単位とする.次の問いに答えよ.

(1)複素数平面上で,点$z$が原点を中心とする半径$2$の円周上を動くとき,点$w$はどのような図形を描くか.ただし,$z \neq 2$とする.
(2)複素数平面上で点$z$が虚軸上を動くとき,点$w$はどのような図形を描くか.
(3)複素数平面上で点$w$が実軸上を動くとき,点$z$はどのような図形を描くか.
香川大学 国立 香川大学 2016年 第4問
座標平面上の放物線$\displaystyle C:y=\frac{1}{2}x^2$に対し,次の問に答えよ.

(1)半径$r$の円が放物線$C$と$2$点で接するとき,円の中心と$2$つの接点の座標を$r$を用いて表せ.
(2)点$(0,\ 1)$を中心とする半径$1$の円を$C_1$とする.$n=2,\ 3,\ 4,\ \cdots$に対し円$C_n$を,放物線$C$と$2$点で接し,円$C_{n-1}$と外接するものとする.このとき,円$C_n$の半径を$n$を用いて表せ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。