タグ「不等号」の検索結果

459ページ目:全4604問中4581問~4590問を表示)
大阪府立大学 公立 大阪府立大学 2010年 第3問
座標平面上において,点$(x,\ y)$から点$(x+1,\ y)$または点$(x,\ y+1)$への移動をN型移動といい,点$(x,\ y)$から点$(x+1,\ y+1)$への移動をS型移動という.$n$を3以上の整数とする.原点Oから出発し,$2n-2$回のN型移動と1回のS型移動を組合せて点$(n,\ n)$に到達する径路の総数を$A(n)$とする.また,このような径路のうち,S型移動を$k$回目の移動として含む径路の総数を$B(n,\ k)$とする.このとき,次の問いに答えよ.

(1)$A(3)$を求めよ.
(2)$B(4,\ 1),\ B(4,\ 2)$をそれぞれ求めよ.
(3)$B(n,\ 1)$を$n$を用いて表せ.
(4)一般の$k=1,\ 2,\ 3,\ \cdots,\ 2n-1$に対して,$B(n,\ k)$を$n,\ k$を用いて表せ.
(5)$A(n)$を$n$を用いて表せ.

ただし,$p,\ q,\ r$を非負の整数とし,$p \leqq q \leqq r$とするとき,
\[ \sum_{i=0}^p \comb{p}{i} \cdot \comb{r}{q-i}=\comb{p+r}{q} \]
が成り立つことを用いてもよい.
高知工科大学 公立 高知工科大学 2010年 第4問
$r$と$\theta$を$-1<r<1,\ 0 \leqq \theta < 2\pi$を満たす定数とする.行列$A=r \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$に対して,次の各問に答えよ.

(1)行列$E-A$は逆行列を持つことを証明し,$(E-A)^{-1}$を求めよ.
(2)全ての自然数$n$について
\[ A^n=r^n \left( \begin{array}{rr}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array} \right) \]
が成立することを数学的帰納法を用いて証明せよ.
(3)$n$を2以上の自然数とする.$(E+A+\cdots +A^{n-1})(E-A)$を簡単な式にせよ.
(4)次の極限値を求めよ.
\[ ① \quad \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \cos k\theta ② \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \sin k\theta \]
大阪府立大学 公立 大阪府立大学 2010年 第4問
次の問いに答えよ.

(1)$a$を正の定数とするとき,関数
\[ f(x)=\log (x+\sqrt{a+x^2}) \]
の導関数$f^\prime(x)$を求めよ.
(2)$t=\sqrt{3}\tan \theta$とおくことにより,定積分
\[ I=\int_0^1 \frac{dt}{\sqrt{(3+t^2)^3}} \]
を求めよ.
(3)$0 \leqq x \leqq 1$であるすべての$x$に対して,不等式
\[ \int_0^x \frac{dt}{\sqrt{(3+t^2)^3}} \geqq k \int_0^x \frac{dt}{\sqrt{3+t^2}} \]
が成り立つための実数$k$の範囲を求めよ.ただし,$\log 3=1.10$とする.
会津大学 公立 会津大学 2010年 第1問
$(1)$の問いに答えよ.また,$(2)$から$(6)$までの空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int_1^e x \log x \, dx=[ ]$
(ii) $\displaystyle \int \sin^3 x \cos x \, dx=[ ]$

(2)$y=\sqrt[5]{2x-1}$のとき,$\displaystyle \frac{dy}{dx}=[ ]$である.
(3)方程式$2^{x^2-1}4^{x+2}=8^{x+3}$の解は$x=[ ]$である.
(4)方程式$\log_3(x-5)=2-\log_3(x+3)$の解は$x=[ ]$である.
(5)2直線$y=3x$と$\displaystyle y=\frac{x}{3}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(6)座標平面上で次の連立不等式
\[ \left\{
\begin{array}{l}
|x|+|y| \leqq 2 \\
x^2+y^2 \geqq 2
\end{array}
\right. \]
の表す領域の面積は[ ]である.
兵庫県立大学 公立 兵庫県立大学 2010年 第4問
数列$\{a_n\},\ \{b_n\}$が
\begin{align}
& a_n=-1+\log \left( 1-\frac{1}{1+ne} \right) \nonumber \\
& b_n=\log (n^2-3n+3)-\log (1+ne) \nonumber
\end{align}
で定められている.ここで$\log$は自然対数,$e$はその底である.このとき,次の問いに答えよ.

(1)$a_n \geqq b_n$を満たす自然数$n$をすべて求めよ.
(2)極限値$\displaystyle \lim_{n \to \infty}(b_n-\log n)$を求めよ.
兵庫県立大学 公立 兵庫県立大学 2010年 第5問
自然数$n$に対して,関数$f_n(x)$を次のように定義する.
\[ f_n(x)=(\sin x+\sin 2x+\cdots +\sin nx)\sin \frac{x}{2} \]
次の問いに答えよ.

(1)方程式$f_2(x)=0$の実数解$x$で,$0<x<\pi$を満たすものを求めよ.
(2)定積分$\displaystyle \int_0^\pi f_{50}(x) \, dx$を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第1問
以下の問いに答えよ.

(1)$a>0,\ b>0$に対して,次の命題が成り立つことを証明せよ.
\[ a^2-b^2>0 \ \text{ならば} \ a-b>0 \ \text{である.} \]
(2)実数$x,\ y$が$xy>0$をみたすとき,不等式$|x+y|>|x-y|$を証明せよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第3問
3次関数$\displaystyle f(x)=\frac{1}{3}x^3-\frac{a}{2}x^2-\frac{a^3}{12}$について,以下の問いに答えよ.ただし,$a>0$とする.

(1)$f(x)$の極大値と極小値を求めよ.
(2)$f$の導関数$y=f^\prime(x)$のグラフの接線で,$x$軸に平行なものを求めよ.
(3)(2)で求めた接線と$y=f(x)$のグラフが,共有点をちょうど3個もつような$a$の値の範囲を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第4問
以下の問いに答えよ.

(1)三角関数の加法定理を用いて,次の等式を証明せよ.
\[ \sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2}\sin \frac{\alpha-\beta}{2} \]
(2)次の不等式を証明せよ.$|\sin \alpha-\sin \beta| \leqq |\alpha-\beta|$ \\
必要ならば,実数$\theta$に対して成り立つ不等式$|\sin \theta| \leqq |\theta|$を用いてよい.
(3)数列$\{a_n\}$を,次の条件によって定める.
\[ a_1=\frac{\pi}{2},\quad a_{n+1}=\frac{1}{2}\sin a_n+\frac{\pi}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の不等式を証明せよ.$\displaystyle |a_{n+2|-a_{n+1}} \leqq \frac{1}{2} |a_{n+1|-a_n} \ (n=1,\ 2,\ 3,\ \cdots)$
(4)(3)の数列$\{a_n\}$に対して,次の不等式を証明せよ.$\displaystyle |a_{n+1|-a_n} \leqq \left( \frac{1}{2} \right)^n$ \ $(n=1,\ 2,\ 3,\ \cdots)$
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第5問
座標平面上の直線$y=x$を$\ell$とし,2点A$(1,\ 0)$,B$(2,\ 0)$を考える.直線$\ell$上を動く点をP$(p,\ p)$とする.また,$\overline{\text{PQ}}$は点Pと点Qの間の距離を表すとする.このとき,以下の問いに答えよ.

(1)直線$\ell$上のすべての点Pに対して,$\overline{\text{PA}}=\overline{\text{PC}}$となるような$y$軸上の動かない点Cの座標を求めよ.
(2)$\overline{\text{PA}}+\overline{\text{PB}}$が最小となるような点Pの座標を求めよ.
(3)$a$は実数とする.直線$\ell$上のすべての点Pに対して,$a \cdot \overline{\text{PA}}^2+(1-a) \cdot \overline{\text{PB}}^2>0$となるような$a$の値の範囲を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。