タグ「不等号」の検索結果

18ページ目:全4604問中171問~180問を表示)
高知大学 国立 高知大学 2016年 第4問
自然数$n$と多項式$f(x)$に対して,$\displaystyle a_n=\int_{-1}^1 x^{n-1}f(x) \, dx$で与えられる数列$\{a_n\}$を考える.このとき,次の問いに答えよ.

(1)$f(x)$が$2$次式で$a_1=0$のとき,$a_3 \neq 0$を示せ.
(2)$f(x)$が$2$次式で$a_1=1$,$a_2=0$,$\displaystyle a_3=\frac{3}{5}$のとき,一般項$a_n$を求めよ.
(3)$f(x)$を$k$次式とする.$f(x)$の係数の絶対値のうち最大なものを$M$とおくとき,任意の自然数$n$に対して,$\displaystyle |a_{2n|} \leqq \frac{(k+1)M}{2n+1}$が成り立つことを示せ.
(4)任意の多項式$f(x)$に対して$\displaystyle \lim_{n \to \infty}a_n=0$が成り立つことを示せ.
高知大学 国立 高知大学 2016年 第2問
$0<k<1$,$0<l<1$とする.鋭角三角形$\mathrm{OAB}$の辺$\mathrm{OA}$を$k:(1-k)$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$l:(1-l)$に内分する点を$\mathrm{Q}$,$\mathrm{AQ}$と$\mathrm{BP}$の交点を$\mathrm{R}$とおく.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$をそれぞれ$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)$\mathrm{P}$,$\mathrm{Q}$が$\mathrm{BP} \perp \mathrm{OA}$かつ$\mathrm{AQ} \perp \mathrm{OB}$をみたすとき,$k,\ l$の値を$\overrightarrow{a}$,$\overrightarrow{b}$のそれぞれの長さ$|\overrightarrow{a|}$,$|\overrightarrow{b|}$および内積$\overrightarrow{a} \cdot \overrightarrow{b}$を用いて表せ.
(4)$k,\ l$が$(3)$の条件をみたすとき,点$\mathrm{R}$は$\mathrm{OR} \perp \mathrm{AB}$をみたすかどうかを内積を計算することによって述べよ.
熊本大学 国立 熊本大学 2016年 第1問
$1$辺の長さ$1$の正四面体$\mathrm{OABC}$を考える.$\displaystyle 0<s<\frac{1}{2}$に対し$\mathrm{OA}$を$s:(1-s)$に内分する点を$\mathrm{P}$とし,$0<t<1$に対し$\mathrm{OC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\mathrm{OB}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{PB}}$,$\overrightarrow{\mathrm{PQ}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ s,\ t$を用いて表せ.
(2)$\angle \mathrm{BPQ}={90}^\circ$であるとき,$t$を$s$を用いて表せ.
(3)$(2)$の条件の下で,$t$の最大値とそのときの$s$の値を求めよ.
(4)$(3)$で求めた$s,\ t$に対して,$\mathrm{PQ}^2$を求めよ.
熊本大学 国立 熊本大学 2016年 第3問
$\displaystyle 0<\theta<\frac{\pi}{2}$を満たす$\theta$に対して,$\alpha=2(\cos \theta+i \sin \theta)$とする.ただし,$i$は虚数単位である.$n=1,\ 2,\ 3,\ \cdots$に対して
\[ z_n=\alpha^n-2 \alpha^{n-1} \]
とおく.以下の問いに答えよ.

(1)$\displaystyle \theta=\frac{\pi}{3}$とするとき,$z_n$を極形式で表せ.

(2)$\displaystyle \theta=\frac{\pi}{3}$とするとき,$\displaystyle \sum_{k=1}^n |z_k|>500$となる最小の$n$を求めよ.

(3)$z_{1000}$が実数となるような$\theta$の値の個数を求めよ.
熊本大学 国立 熊本大学 2016年 第2問
$x \geqq 1$で定義された関数
\[ f(x)=\frac{\log x}{x^2} \]
について,以下の問いに答えよ.

(1)$x \geqq 1$における$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$a$とする.曲線$y=f(x)$と$2$直線$y=0$,$x=a$で囲まれた図形を$D$とする.$D$の面積を求めよ.
(3)$(2)$の図形$D$を$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
熊本大学 国立 熊本大学 2016年 第3問
$\displaystyle 0<\theta<\frac{\pi}{2}$を満たす$\theta$に対して,$\alpha=2(\cos \theta+i \sin \theta)$とする.ただし,$i$は虚数単位である.$n=1,\ 2,\ 3,\ \cdots$に対して
\[ z_n=\alpha^n-2 \alpha^{n-1} \]
とおく.以下の問いに答えよ.

(1)$\displaystyle \theta=\frac{\pi}{3}$とするとき,$z_n$を極形式で表せ.

(2)$\displaystyle \theta=\frac{\pi}{3}$とするとき,$\displaystyle \sum_{k=1}^n |z_k|>500$となる最小の$n$を求めよ.

(3)$z_{1000}$が実数となるような$\theta$の値の個数を求めよ.
熊本大学 国立 熊本大学 2016年 第4問
$x \geqq 1$で定義された関数
\[ f(x)=\frac{\log x}{x^2} \]
について,以下の問いに答えよ.

(1)$x \geqq 1$における$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$a$とする.曲線$y=f(x)$と$2$直線$y=0$,$x=a$で囲まれた図形を$D$とする.$D$の面積を求めよ.
(3)$(2)$の図形$D$を$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
防衛医科大学校 国立 防衛医科大学校 2016年 第2問
$m$個の玉を$n$個の箱に入れる作業を考える($1 \leqq m \leqq n$).各玉をどの箱に入れるかはランダム,すなわち,すべての箱は$\displaystyle \frac{1}{n}$の確率で選ばれるものとし,各々の玉を入れる作業は独立であるとする.このとき,以下の問に答えよ.

(1)すべての玉が別々の箱に入る確率はいくらか.
(2)$m=3$のとき,$2$個の箱にのみ玉が入る確率はいくらか.
(3)$m-k$個の箱にのみ玉が入る確率を$P_{m,k}(n)$とする.ここで,$m \geqq 2$,$1 \leqq k \leqq m-1$である.$\displaystyle \lim_{n \to \infty}P_{m,k}(n)$はいくらか.
防衛医科大学校 国立 防衛医科大学校 2016年 第4問
関数$f(x)=\sin^{2n+2}x+4 \cos^{2n+2}x$($\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$,$n$は自然数)について以下の問に答えよ.

(1)$\displaystyle \int_0^{\frac{\pi}{2}} f(x) \, dx$はいくらか.

(2)$f(x)$の最小値はいくらか.
和歌山大学 国立 和歌山大学 2016年 第4問
$a \geqq 0$を満たす実数$a$に対して,関数
\[ f(t)=t^3-6t^2+9t \]
の$-1 \leqq t \leqq a$における最大値を$g(a)$とする.次の問いに答えよ.

(1)$g(2)$と$g(5)$を求めよ.
(2)$0 \leqq x \leqq 5$の範囲で$y=g(x)$のグラフの概形をかけ.
(3)$y=g(x)$のグラフと$x$軸および直線$x=5$で囲まれた部分の面積$S$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。