タグ「不定積分」の検索結果

1ページ目:全131問中1問~10問を表示)
愛知教育大学 国立 愛知教育大学 2016年 第9問
次の問いに答えよ.

(1)不定積分$\displaystyle \int \sin^2 t \, dt$,$\displaystyle \int \sin t \cos t \, dt$,$\displaystyle \int \cos^2 t \, dt$をそれぞれ求めよ.
(2)等式
\[ f(x)=\cos x+\frac{1}{\pi} \int_0^\pi f(t) \cos (t-x) \, dt \]
を満たす$f(x)$を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第5問
点$\mathrm{P}$は$x$座標が正または$0$の範囲で放物線$\displaystyle y=1-\frac{x^2}{2}$上を動くとする.点$\mathrm{P}$における放物線$\displaystyle y=1-\frac{x^2}{2}$の法線を$m$として,法線$m$と$x$軸とのなす角を$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$とする.法線$m$上の点$\mathrm{Q}$は$\mathrm{PQ}=1$を満たし,不等式$\displaystyle y>1-\frac{x^2}{2}$の表す領域にあるとする.点$\mathrm{Q}$の軌跡を$C$とし,次の問いに答えよ.

(1)点$\mathrm{P},\ \mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)曲線$C$と$x$軸との交点の座標を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{\sin \theta} \, d\theta$を$t=\cos \theta$と置換することにより求めよ.

(4)不定積分$\displaystyle \int \frac{1}{\sin^2 \theta} \, d\theta$,$\displaystyle \int \frac{1}{\sin^4 \theta} \, d\theta$を$\displaystyle t=\frac{\cos \theta}{\sin \theta}$と置換することにより求めよ.

(5)曲線$C$と$x$軸および$y$軸により囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の曲線$C:y=e^x$に対し,次の問に答えよ.

(1)原点から曲線$C$に引いた接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および$y$軸で囲まれた図形$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(4)部分積分法を用いて,不定積分$\displaystyle I=\int \log y \, dy$,$\displaystyle J=\int (\log y)^2 \, dy$を求めよ.
(5)$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
香川大学 国立 香川大学 2016年 第4問
座標平面上の曲線$C:y=e^x$に対し,次の問に答えよ.

(1)原点から曲線$C$に引いた接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および$y$軸で囲まれた図形$D$を図示せよ.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(4)部分積分法を用いて,不定積分$\displaystyle I=\int \log y \, dy$,$\displaystyle J=\int (\log y)^2 \, dy$を求めよ.
(5)$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
佐賀大学 国立 佐賀大学 2016年 第2問
次の問に答えよ.

(1)$\displaystyle 1+\tan^2 x=\frac{1}{\cos^2 x}$を利用して,不定積分$\displaystyle \int \tan^2 x \, dx$を求めよ.

(2)$2$つの曲線$\displaystyle y=\frac{3}{2} \tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$,$\displaystyle y=\cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
電気通信大学 国立 電気通信大学 2016年 第1問
関数
\[ f(x)=2 \sin x+\sqrt{6} \sin 2x \]
について,以下の問いに答えよ.

(1)導関数$f^\prime(x)$および不定積分$\displaystyle \int f(x) \, dx$を求めよ.ただし,積分定数は省略してもよい.
(2)区間$0<x<\pi$において$f(x)=0$となる$x$の値を$\alpha$とする.このとき,$\cos \alpha$と$\cos 2 \alpha$の値を求めよ.
(3)区間$0<x<\pi$において$f^\prime(x)=0$となる$x$の値を$\beta,\ \gamma (\beta<\gamma)$とする.このとき,$\cos \beta$と$\cos \gamma$の値を求めよ.
(4)区間$0 \leqq x \leqq \pi$における$f(x)$の最大値を求めよ.
(5)曲線$y=f(x) (0 \leqq x \leqq \pi)$と$x$軸で囲まれた$2$つの部分の面積の和$S$を求めよ.
同志社大学 私立 同志社大学 2016年 第2問
次の問いに答えよ.

(1)関数$f(u)=\log (\sqrt{u}-1)-\log (\sqrt{u}+1)$の導関数$f^\prime(u)$を求めよ.
(2)関数$F(x)=\log (\sqrt{e^{2x}+1}-1)-\log (\sqrt{e^{2x}+1}+1)$の導関数$F^\prime(x)$を求めよ.
(3)等式$\displaystyle \sqrt{e^{2x}+1}=\frac{e^{2x}}{\sqrt{e^{2x}+1}}+\frac{1}{\sqrt{e^{2x}+1}}$を用いて,不定積分$\displaystyle \int \sqrt{e^{2x}+1} \, dx$を求めよ.
(4)曲線$\displaystyle y=e^x \left( \frac{1}{2} \log 8 \leqq x \leqq \frac{1}{2} \log 24 \right)$の長さを求めよ.
南山大学 私立 南山大学 2016年 第2問
関数$f(x)=xe^x$と曲線$C:y=f(x)$を考える.

(1)導関数$f^\prime(x)$を求めよ.
(2)$C$上の点$(t,\ te^t)$における$C$の接線の方程式を求めよ.

(3)$C$の接線で点$\displaystyle \left( \frac{1}{2},\ 0 \right)$を通るものを求めよ.

(4)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(5)$(3)$で求めた接線のうち,接点の$x$座標が$\displaystyle \frac{1}{2}$より大きいものを$\ell$とするとき,$C$と$\ell$と直線$\displaystyle x=\frac{1}{2}$とで囲まれた部分の面積$S$を求めよ.
広島国際学院大学 私立 広島国際学院大学 2016年 第4問
以下の問いに答えなさい.

(1)次の式を簡単にしなさい.
\[ \frac{1}{1-\displaystyle\frac{1}{1+x}} \]
(2)次の不定積分を計算しなさい.
\[ \int (2x^3-x) \, dx \]
大阪工業大学 私立 大阪工業大学 2016年 第3問
関数$\displaystyle f(x)=\frac{\log x}{(x+e)^2}$について,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$\displaystyle \frac{e}{x(x+e)}=\frac{A}{x}+\frac{B}{x+e}$が,$x$についての恒等式となるような定数$A,\ B$の値を求めよ.
(2)不定積分$\displaystyle \int \frac{1}{x(x+e)} \, dx$を求めよ.
(3)部分積分法を用いて,定積分$\displaystyle \int_1^{e^2} f(x) \, dx$を求めよ.
スポンサーリンク

「不定積分」とは・・・

 まだこのタグの説明は執筆されていません。