タグ「キク」の検索結果

1ページ目:全39問中1問~10問を表示)
東邦大学 私立 東邦大学 2016年 第2問
空間において,方程式$x^2+y^2+z^2-2x-8y-4z-28=0$で表される曲面を$C$とする.このとき,$C$は中心$([ウ],\ [エ],\ [オ])$,半径$[カ]$の球面である.また,$C$上の点$(-5,\ 6,\ 5)$で接する平面と$z$軸との交点の座標は$(0,\ 0,\ [キク])$である.
東北医科薬科大学 私立 東北医科薬科大学 2016年 第3問
放物線$y=1-4x^2$上の点$\mathrm{P}(a,\ b)$と,この放物線の点$\mathrm{P}$を通る接線を$\ell$とおく.また,直線$\ell$と放物線$y=-x^2+2x+4$とで囲まれる図形の面積を$S(a)$とおく.このとき,次の問に答えなさい.

(1)$a=0$のとき,接線$\ell$と放物線$y=-x^2+2x+4$の交点の$x$座標は$x=[アイ]$,$[ウ]$である.また,$\displaystyle S(0)=\frac{[エオ]}{[カ]}$である.

(2)$0 \leqq b$となるような$a$の値の範囲は$\displaystyle \frac{[キク]}{[ケ]} \leqq a \leqq \frac{[コ]}{[サ]}$である.

(3)接線$\ell$の方程式は$y=-[シ]ax+[ス]a^2+[セ]$であり,
$\displaystyle S(a)=\frac{[ソタ]}{[チ]} \left( [ツ]a^2+[テ]a+[ト] \right)^{\frac{\mkakko{ナ}}{\mkakko{ニ}}}$となる.
また$S(a)$が最小となるのは$\displaystyle a=\frac{[ヌネ]}{[ノ]}$のときである.
東邦大学 私立 東邦大学 2016年 第8問
$e$を自然対数の底とする.関数$\displaystyle f(x)=\frac{2}{3} \log_e x+2x^2+ax$が極値をもつための$a$の値の範囲は$\displaystyle a<\frac{[キク] \sqrt{[ケ]}}{[コ]}$である.
獨協医科大学 私立 獨協医科大学 2016年 第3問
三角形$\mathrm{ABC}$について,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=8$とする.このとき
\[ \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[アイ] \]
である.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.このとき
\[ \overrightarrow{\mathrm{AD}}=\frac{[ウ]}{[エオ]} \overrightarrow{\mathrm{AB}}+\frac{[カ]}{[キク]} \overrightarrow{\mathrm{AC}} \]
である.

また,三角形$\mathrm{ABC}$の内接円の中心を$\mathrm{I}$,外接円の中心を$\mathrm{O}$とすると


$\displaystyle \overrightarrow{\mathrm{AI}}=\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{AB}}+\frac{[サ]}{[シ]} \overrightarrow{\mathrm{AC}}$

$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{[ス]}{[セソ]} \overrightarrow{\mathrm{AB}}+\frac{[タチ]}{[ツテ]} \overrightarrow{\mathrm{AC}}$


である.
したがって
\[ |\overrightarrow{\mathrm{OI|}}^2=\frac{[ト]}{[ナ]} \]
である.
三角形$\mathrm{ABC}$の外接円の周上を動く点$\mathrm{P}$と内接円の周上を動く点$\mathrm{Q}$があるとき,線分$\mathrm{PQ}$の長さの最大値は
\[ \frac{[ニヌ]+\sqrt{[ネ]}}{\sqrt{[ノ]}} \]
である.
東京薬科大学 私立 東京薬科大学 2016年 第1問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$x^2+5x+1=0$のとき,$\displaystyle x+\frac{1}{x}=[$*$ア]$であり,$\displaystyle x^2+\frac{1}{x^2}=[イウ]$である.

(2)$\displaystyle \frac{3}{2}\pi<\theta<2 \pi$かつ$\displaystyle \tan \theta=-\frac{12}{5}$のとき,$\displaystyle \cos \theta=\frac{[$*$エ]}{[オカ]}$,$\displaystyle \sin \theta=\frac{[$*$キク]}{[オカ]}$である.

(3)点$(4,\ 2)$を通り,傾きが$m$の直線$\ell$が,円$C:x^2+y^2=4$に接するとき,$\displaystyle m=[ケ]$,$\displaystyle \frac{[コ]}{[サ]}$である.

(4)容器$\mathrm{A}$には質量パーセント濃度$3 \, \%$の食塩水が$200 \, \mathrm{g}$,容器$\mathrm{B}$には質量パーセント濃度$10 \, \%$の食塩水が$300 \, \mathrm{g}$入っている.今,$\mathrm{A}$,$\mathrm{B}$それぞれから同量ずつ食塩水を取り出し,$\mathrm{A}$から取り出したものを$\mathrm{B}$へ,$\mathrm{B}$から取り出したものを$\mathrm{A}$へ入れたところ,$2$つの容器$\mathrm{A}$,$\mathrm{B}$内の食塩水の質量パーセント濃度が等しくなった.このとき,容器$\mathrm{A}$,$\mathrm{B}$それぞれから取り出した食塩水の量は$[シスセ] \, \mathrm{g}$である.ただし,質量パーセント濃度とは溶液(本問の場合,食塩水)の質量に対する溶質(本問の場合,食塩)の質量の割合を百分率($\%$)で表したものである.
埼玉工業大学 私立 埼玉工業大学 2016年 第1問
次の$[ ]$にあてはまるものを記入せよ.

(1)整式$P(x)$を$(x+1)^3$で割ったときの余りが$x^2-x+1$のとき,$P(x)$を$(x+1)^2$で割った余りは,$[アイ]x$である.

(2)無限級数$\displaystyle \sum_{n=1}^\infty \left\{ \left( \frac{1}{2} \right)^n+\left( \frac{1}{3} \right)^n \right\}$の和は,$\displaystyle \frac{[ウ]}{[エ]}$である.

(3)正の整数$a,\ b$について,$a$を$5$で割ると余りが$2$,$b$を$5$で割ると余りが$3$である.積$ab$を$5$で割ったとき,余りは$[オ]$となる.
(4)$3$つの数$4,\ a,\ b$は,この順に等差数列をなし,$a,\ b,\ 4$は,この順に等比数列をなす.このとき$a=[カ]$,$b=[キク]$である.ただし,$a$と$b$は等しくないとする.
東洋大学 私立 東洋大学 2016年 第1問
次の各問に答えよ.

(1)整式$(a+b-7)^3-(a-b+7)^3$を因数分解すると,
\[ 2(b-[ア])([イ]a^2+b^2-[ウエ]b+[オカ]) \]
となる.
(2)$\log_2 x+\log_2 y=4$のとき,$x^2+y^2$の最小値は$[キク]$で,そのときの$x,\ y$の値は$x=[ケ]$,$y=[コ]$である.
(3)各辺の長さが$\mathrm{AB}=10$,$\mathrm{BC}=8$,$\mathrm{CA}=6$である$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$,$\angle \mathrm{A}$の外角の$2$等分線と辺$\mathrm{BC}$の延長との交点を$\mathrm{E}$とする.このとき,線分$\mathrm{DE}$の長さは$[サシ]$である.
(4)$k$を定数とするとき,方程式$x^3+3x^2-9x-k=0$が異なる$3$個の実数解をもつための必要十分条件は$-[ス]<k<[セソ]$である.
センター試験 問題集 センター試験 2015年 第1問
$2$次関数
\[ y=-x^2+2x+2 \cdots\cdots① \]
のグラフの頂点の座標は$([ア],\ [イ])$である.また
\[ y=f(x) \]
は$x$の$2$次関数で,そのグラフは,$①$のグラフを$x$軸方向に$p$,$y$軸方向に$q$だけ平行移動したものであるとする.

(1)下の$[ウ],\ [オ]$には,次の$\nagamarurei$~$\nagamarushi$のうちから当てはまるものを一つずつ選べ.ただし,同じものを繰り返し選んでもよい.
\[ \nagamarurei > \qquad \nagamaruichi < \qquad \nagamaruni \geqq \qquad \nagamarusan \leqq \qquad \nagamarushi \neq \]
$2 \leqq x \leqq 4$における$f(x)$の最大値が$f(2)$になるような$p$の値の範囲は
\[ p [ウ] [エ] \]
であり,最小値が$f(2)$になるような$p$の値の範囲は
\[ p [オ] [カ] \]
である.

(2)$2$次不等式$f(x)>0$の解が$-2<x<3$になるのは
\[ p=\frac{[キク]}{[ケ]},\quad q=\frac{[コサ]}{[シ]} \]
のときである.
東京医科大学 私立 東京医科大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)ベクトル$\overrightarrow{a}=(2,\ 1)$,$\overrightarrow{b}=(4,\ 3)$,$\overrightarrow{c}=(3,\ 0)$,$\overrightarrow{d}=(1,\ 2)$に対して,等式
\[ |\overrightarrow{a}+t \overrightarrow{b}|=|\overrightarrow{c}+t \overrightarrow{d}| \]
をみたす実数$t$の値は$2$つあり,それらを$t_1,\ t_2 (t_1<t_2)$とすれば,
\[ t_1=[アイ],\quad t_2=\frac{[ウ]}{[エ]} \]
である.
(2)座標平面上の$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-(x-9)^2+28 \]
を考える.$C_1,\ C_2$の両方に接する直線は$2$つあり,それらの方程式を傾きの小さい方から順に並べれば,
\[ y=[オ]x-[カ],\quad y=[キク]x-[ケコ] \]
である.
東邦大学 私立 東邦大学 2015年 第3問
${25}^{25}$の桁数は$[キク]$である.ただし,$\log_{10}2=0.301$とする.
スポンサーリンク

「キク」とは・・・

 まだこのタグの説明は執筆されていません。