タグ「カード」の検索結果

5ページ目:全194問中41問~50問を表示)
早稲田大学 私立 早稲田大学 2015年 第6問
$2$つの箱$\mathrm{A}$と$\mathrm{B}$に,自然数が$1$つ記されたカードが何枚かずつ入っている.箱$\mathrm{A}$,$\mathrm{B}$からカードを$1$枚ずつ,合計$2$枚のカードを取り出す試行を行う.自然数$n$に対し,取り出された$2$枚のカードに記された自然数の和が$n$である確率を$P_n$とする.

(1)箱$\mathrm{A}$に数字$2,\ 3$が記されたカードがそれぞれ$1$枚ずつ,箱$\mathrm{B}$に数字$1,\ 2,\ 3$が記されたカードがそれぞれ$1$枚ずつ入っているとき,$\displaystyle P_4=\frac{[ネ]}{[ノ]}$である.また,取り出された$2$枚のカードに記された$2$つの自然数の和の期待値は$\displaystyle \frac{[ハ]}{[ヒ]}$である.
(2)箱$\mathrm{A}$にカードが$3$枚,箱$\mathrm{B}$にカードが$5$枚入っていて,
\[ P_2=\frac{1}{15},\quad P_3=\frac{1}{5},\quad P_4=\frac{1}{3},\quad P_5=\frac{2}{5} \]
が成立している.このとき,箱$\mathrm{B}$に入っているカードのうち,最も枚数が多いのは$[フ]$という数字が記されたカードであり,その枚数は$[ヘ]$枚である.
早稲田大学 私立 早稲田大学 2015年 第4問
$N$を$3$以上の自然数とする.$1$から$N$までの数字が書かれた$N$枚のカードを用意し,$\mathrm{A}$と$\mathrm{B}$の二人で次のようなゲームを行う.まず$\mathrm{A}$は,$1$から$N$までの数のうちから一つ選びそれを$K$とし,その数は$\mathrm{B}$に知らせずにおく.その後,以下の試行を何度も繰り返す.

$\mathrm{B}$は$N$枚のカードから無作為に一枚引いて$\mathrm{A}$にその数を伝え,$\mathrm{A}$は引かれた数字が$K$より大きければ「上」,$K$以下であれば「以下」と$\mathrm{B}$に答え,$\mathrm{B}$はその答から$K$の範囲を絞り込む.引いたカードは元へ戻す.
このとき,$n$回以下の試行で$\mathrm{B}$が$K$を確定できる確率を$P_N(n)$で表す.次の問に答えよ.

(1)$K=1$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(2)$K=2$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(3)$K=1,\ 2,\ \cdots,\ N$について$P_N(n)$を求めよ.
(4)自然数$c$に対して,極限値$\displaystyle \lim_{N \to \infty} P_N(cN)$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
硬貨を$1$枚投げて表が出れば$\mathrm{A}$に$1$点,裏が出れば$\mathrm{B}$に$1$点を与えることを繰り返す.硬貨を$5$回投げ終わった時点で$\mathrm{A}$の得点は$3$点,$\mathrm{B}$の得点は$2$点であった.なお,硬貨は表裏が等しい確率で出るものとする.

(1)$6$回目以降,$\mathrm{A}$,$\mathrm{B}$のどちらかが$5$点を取るまでの各回の得点の与え方を樹形図で表すと,その場合の数は$[$11$][$12$]$通りであることがわかる.そして,$\mathrm{A}$が$\mathrm{B}$より先に$5$点を取る確率は$\displaystyle \frac{[$13$][$14$]}{[$15$][$16$]}$である.
(2)$6$回目以降の各回の得点の与え方を次のように変更する.$\mathrm{A}$は$1,\ 3,\ 5$と書かれたカードがそれぞれ$1$枚ずつ入った袋から,$\mathrm{B}$は$2,\ 4$と書かれたカードが$1$枚ずつ入った袋から,中を見ずに$1$枚取り出し,大きい数字の書かれたカードを取り出した方に$1$点を与える.このとき,各回ごとに$\mathrm{A}$が得点する確率は$\displaystyle \frac{[$17$]}{[$18$]}$であり,$\mathrm{A}$が先に$5$点を取る確率は$\displaystyle \frac{[$19$][$20$]}{[$21$][$22$]}$である.
(3)$6$回目以降について,$\mathrm{A}$の袋は$(2)$と同じとし,$\mathrm{B}$の袋には$6$と書かれたカードを$1$枚追加して,$(2)$と同様に各回の得点の与え方を定める.このとき$\mathrm{A}$が先に$5$点を取る確率は$\displaystyle \frac{[$23$][$24$]}{[$25$][$26$]}$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
銀行口座(以降,口座)から$\mathrm{IC}$カードに金額を移転し,そのカードを用いて支払いをおこなうものとする.口座からカードに移転した金額を超過してさらに支払う必要が生じた場合,その分は銀行が自動的に立て替えて払うものとする.

このとき,口座からカードに金額を移転することに伴う利子収入の減少分,および銀行からの借入れに伴う利払い,そして口座からカードへの移転に伴う手数料,それらの合計$Z$を最小にする問題を考える.適当な仮定のもと,$Z$は独立変数$x,\ y$の関数として,つぎのように表わされる.
\[ Z=\frac{xy^2}{40A}+\frac{A^2-2xyA+x^2y^2}{30xA}+6x \]
ただし$(x,\ y)$は座標平面の第$1$象限の点であり,$A$は定数である.

(1)$x$を固定し,$Z$を$y$の関数と考えれば,その最小値は
\[ y=\frac{[$35$][$36$]}{[$37$][$38$]} \frac{A}{x} \]
のときである.
(2)$Z$に$(1)$の結果を代入し,$Z$を$x$のみの関数とみれば
\[ x=\sqrt{\frac{[$39$][$40$][$41$]}{[$42$][$43$][$44$]}A} \]
のとき$Z$は最小になる.
(3)以上から$Z$の最小値は
\[ \sqrt{\frac{[$45$][$46$][$47$]}{[$48$][$49$][$50$]}A} \]
である.
中央大学 私立 中央大学 2015年 第4問
「当たり」のカードが$2$枚,「外れ」のカードが$8$枚,計$10$枚のカードが入っている箱がある.この箱を使って,次の試行を行う.
\begin{itemize}
試行$\mathrm{A}$:カードを$1$枚引き,「当たり」の有無を確認して,箱に戻す.
試行$\mathrm{B}$:カードを$2$枚引き,「当たり」の有無を確認して,箱に戻す.
\end{itemize}
$k$を正の整数とし,試行$\mathrm{A}$を$k$回繰り返したとき,

「当たり」の有る試行が,少なくとも$1$回ある確率

を$P(k)$とする.一方,試行$\mathrm{B}$を$k$回繰り返した時に,

$2$枚とも「当たり」である試行が,少なくとも$1$回ある確率

を$Q(k)$とする.このとき,以下の設問に答えよ.

(1)$P(3)$および$Q(2)$を求めよ.
(2)下の常用対数表を用いて,$\log_{10}45$の値を小数点以下$3$位まで求めよ.


\begin{tabular}{c|ccccc}
\hline
$n$ & $2$ & $3$ & $7$ & $11$ & $13$ \\ \hline
$\log_{10}n$ & $0.301$ & $0.477$ & $0.845$ & $1.041$ & $1.114$ \\ \hline
\end{tabular}


(3)$P(10)$と$Q(100)$はどちらが大きいか.根拠を述べて解答せよ.なお,前問の常用対数表を利用してよい.
上智大学 私立 上智大学 2015年 第2問
赤いカードと青いカードが$10$枚ずつあり,それぞれ$0$から$9$までの数字が$1$つずつ書かれている.これら$20$枚から数枚を選ぶときの選び方に関する次の条件$P$を考える.

$P$:選んだカードのうち,赤いカードに書かれた数字はすべて偶数である.

(1)$P$であるための必要十分条件を下の選択肢からすべて選べ.ただし,選択肢に正解がない場合は,$Z$をマークせよ.
(2)$P$の否定を下の選択肢からすべて選べ.ただし,選択肢に正解がない場合は,$Z$をマークせよ.
選択肢:
\mon[$\mathrm{A}$] 選んだカードのうち,青いカードに書かれた数字はすべて奇数である.
\mon[$\mathrm{B}$] 選んだカードのうち,奇数が書かれたカードはすべて青い.
\mon[$\mathrm{C}$] 選んだカードのうち,偶数が書かれたカードはすべて赤い.
\mon[$\mathrm{D}$] 選んだカードのうちに,偶数が書かれた青いカードが存在する.
\mon[$\mathrm{E}$] 選んだカードのうちに,奇数が書かれた赤いカードが存在する.
\mon[$\mathrm{F}$] 選んだカードのうちに,偶数が書かれた青いカードは存在しない.
\mon[$\mathrm{G}$] 選んだカードのうちに,奇数が書かれた赤いカードは存在しない.
上智大学 私立 上智大学 2015年 第4問
$1$から$9$の整数が$1$つずつ書かれた$9$枚のカードから$1$枚ずつ$2$回カードを取り出す.最初に取り出したカードを元に戻してから次のカードを取り出す場合を「戻す場合」といい,最初のカードを戻さずに次のカードを取り出す場合を「戻さない場合」ということにする.最初に取り出したカードに書かれている数を$a$とし,次に取り出したカードに書かれている数を$b$とする.

(1)戻す場合,$8 \leqq a+b \leqq 12$となる確率は$\displaystyle \frac{[チ]}{[ツ]}$であり,戻さない場合,$8 \leqq a+b \leqq 12$となる確率は$\displaystyle \frac{[テ]}{[ト]}$である.
(2)戻す場合,$60 \leqq ab \leqq 70$となる確率は$\displaystyle \frac{[ナ]}{[ニ]}$であり,戻さない場合,$60 \leqq ab \leqq 70$となる確率は$\displaystyle \frac{[ヌ]}{[ネ]}$である.
(3)戻す場合,$60 \leqq ab+a+b \leqq 70$となる確率は$\displaystyle \frac{[ノ]}{[ハ]}$であり,戻さない場合,$60 \leqq ab+a+b \leqq 70$となる確率は$\displaystyle \frac{[ヒ]}{[フ]}$である.
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上に$\mathrm{A}(3,\ 2)$,$\mathrm{B}(8,\ 2)$,$\mathrm{C}(6,\ 6)$,$\mathrm{D}(3,\ 6)$を頂点とする四角形$\mathrm{ABCD}$と点$\mathrm{P}$がある.$\mathrm{P}$と四角形$\mathrm{ABCD}$の周上の点(頂点を含む)との距離の最小値を$d$とする.

(1)$\mathrm{P}$の座標が$(2,\ 1)$,$\mathrm{P}$の座標が$(2,\ 8)$,$\mathrm{P}$の座標が$(6,\ 4)$のとき,$d$はそれぞれ
\[ \sqrt{[ア]},\quad \sqrt{[イ]},\quad \frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.
(2)$1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8$のそれぞれの数字が書かれたカードが$1$枚ずつ,合計$8$枚ある.これらの$8$枚のカードをよく混ぜてから,カードを$1$枚取り出す.このカードを元に戻さないで,もう$1$枚カードを取り出す.$1$回目に取り出したカードの数字を$x$,$2$回目に取り出したカードの数字を$y$として,座標が$(x,\ y)$である点を$\mathrm{P}$とする.

(i) $d=0$,$d=1$,$d=2$となる確率は,それぞれ
\[ \frac{[カ]}{[キ][ク]},\quad \frac{[ケ]}{[コ][サ]},\quad \frac{[シ]}{[ス][セ]} \]
である.
また,$d$が無理数となる確率は,$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}$である.
(ii) $d$の期待値は,
\[ \frac{[テ]}{[ト][ナ]}+\frac{[ニ]}{[ヌ][ネ]} \sqrt{[ノ]}+\frac{[ハ][ヒ]}{[フ][ヘ][ホ]} \sqrt{[マ]} \]
である.
中央大学 私立 中央大学 2015年 第2問
ある鉄道会社では平成$26$年$3$月まで,最低運賃$130$円から$1000$円まで$10$円きざみで運賃が設定されていた.この年$4$月からの消費税率の引き上げに伴い,次のように運賃を改定することにした.

\mon[$①$] $\mathrm{IC}$カードを利用する場合
改定前の運賃に$108/105$を乗じ,$1$円未満の端数を切り捨て,$1$円単位にした額を新運賃とする.
\mon[$②$] 券売機等で発売する切符を利用する場合
改定前の運賃に$108/105$を乗じ,$10$円未満の端数を切り上げ,$10$円単位とした額を新運賃とする.

以下の問いに答えよ.

(1)切符を利用する場合,$20$円の値上げとなるような改定前運賃の範囲を求めよ.
(2)運賃改定後,$\mathrm{IC}$カードを利用した場合と,切符を利用した場合で運賃の差が最大となるような改定前運賃をすべて求めよ.
(3)切符を利用する場合の規則を,$10$円未満の端数を切り上げるのではなく,四捨五入する計算方法に変えたとする.このとき,値上げにならない運賃の範囲を求めよ.
東北工業大学 私立 東北工業大学 2015年 第3問
以下の問いに答えよ.

(1)$\displaystyle (8^{\frac{1}{4}}-3^{-\frac{1}{4}})(8^{\frac{1}{4}}+3^{-\frac{1}{4}})(8^{\frac{1}{2}}+3^{-\frac{1}{2}})=\frac{[ナ][ニ]}{3}$
(2)$\log_2 72-3 \log_4 9+2 \log_4 6=[ヌ][ネ]$
(3)赤,白,青のカードが$4$枚ずつあり,各色ごとに$1$から$4$までの番号が$1$つずつ書かれている.$12$枚のカードをよくまぜてから同時に$3$枚取り出す.$3$枚の番号がすべて異なる確率は$\displaystyle \frac{[ノ][ハ]}{55}$.
(4)$\mathrm{O}$を原点とし,$2$点$\mathrm{A}$,$\mathrm{B}$の位置ベクトルが$\overrightarrow{\mathrm{OA}}=2 \overrightarrow{a}+3 \overrightarrow{b}$,$\overrightarrow{\mathrm{OB}}=(t-6) \overrightarrow{a}+(t+1) \overrightarrow{b}$であるとする($\overrightarrow{a},\ \overrightarrow{b}$は零ベクトルではなく,たがいに平行ではないものとする.$t$は実数とする.).$t=[ヒ][フ]$のとき$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は一直線上にある.
(5)初項$-100$,公差$7$の等差数列において,第$[ヘ][ホ]$項で初めて$500$以上になる.
スポンサーリンク

「カード」とは・・・

 まだこのタグの説明は執筆されていません。