タグ「さいころ」の検索結果

3ページ目:全413問中21問~30問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2016年 第4問
サイコロを何回か振って最後に出た目を得点とするゲームを行う.

(1)サイコロを$1$回だけ振ることができるときの得点の期待値$E_1$を求めよ.
(2)サイコロを$2$回まで振ることができるとき,$1$回目に$m$以上の目が出たらそこでやめ,$m$より小さい目が出たら$2$回目を振ることにする.このときの得点の期待値$E_2(m)$を$m$を用いて表し,$E_2(m)$が最大となる$m$を求めよ.
(3)$n$を$2$以上の自然数,$m_1,\ \cdots,\ m_{n-1}$を$6$以下の自然数とする.$n$回までサイコロを振ることができるとき,$i$回目に$m_{n-i}$以上の目が出たらそこでやめ,$m_{n-i}$より小さい目が出たら$i+1$回目を振るという規則でサイコロを振り続ける.ただし,$n$回サイコロを振ったらそこでやめる.このときの得点の期待値を$E_n(m_1,\ \cdots,\ m_{n-1})$とする.以下の問いに答えよ.

(i) $E_3(m_1,\ m_2)$を$E_2(m_1)$,$m_2$を用いて表し,$E_3(m_1,\ m_2)$が最大となる$m_1,\ m_2$とそのときの$E_3(m_1,\ m_2)$の値を求めよ.
(ii) $n \geqq 4$とする.$E_{n-1}(m_1,\ \cdots,\ m_{n-2})$の最大値を$e_{n-1}$とすると,$E_n(m_1,\ \cdots,\ m_{n-1})$が最大となるのは,$E_{n-1}(m_1,\ \cdots,\ m_{n-2})$が$e_{n-1}$となり,かつ$m_{n-1}$が$e_{n-1}$以上の最小の自然数となるときである.このことを示せ.

ただし,得点が$k$となる確率を$p(k)$としたとき,
\[ p(1)+2p(2)+3p(3)+4p(4)+5p(5)+6p(6) \]
を得点の期待値とよぶ.
山口大学 国立 山口大学 2016年 第2問
$1$から$6$までの目が同じ割合で出る$4$個のさいころを同時に投げるとき,次の確率を求めなさい.

(1)出る目がすべて異なる確率
(2)出る目の最小値が$2$,かつ最大値が$3$である確率
(3)出る目の最大値と最小値の積が$20$以上である確率
早稲田大学 私立 早稲田大学 2016年 第1問
$1$個のさいころと$1$枚の硬貨がある.はじめにさいころを投げて出た目を$X$とし,続けて硬貨を$X$回投げて表が出る回数を$Z$とする.以下の問に答えよ.

(1)$X=5$であったとき$Z=4$となる確率を求めよ.
(2)$Z=4$となる確率を求めよ.
(3)$Z \leqq 3$となる確率を求めよ.
南山大学 私立 南山大学 2016年 第1問
次の$[ ]$の中に答を入れよ.

(1)放物線$C_1:y=x^2+ax+8$を$x$軸方向に$5$だけ平行移動した放物線$C_2$の方程式は$y=[ア]$である.$C_2$を$y$軸に関して対称移動した放物線が$C_1$に一致するとき,定数$a$の値を求めると$a=[イ]$である.
(2)$455$と$273$の最大公約数は$[ウ]$である.また,方程式$455x+273y=2821$を満たす自然数の組$(x,\ y)$をすべて求めると$(x,\ y)=[エ]$である.
(3)$0<\theta<\pi$とする.方程式$\cos 2\theta-\sin \theta=0$を解くと$\theta=[オ]$であり,方程式$\sin 2\theta-\cos 2\theta-\sqrt{6} \sin \theta+1=0$を解くと$\theta=[カ]$である.
(4)$3$つのさいころを同時に投げる.このとき,出る目の積が奇数になる確率は$[キ]$であり,出る目の積が$4$以上の偶数になる確率は$[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の$[ ]$にあてはまる最も適当な数または式などを記入しなさい.

(1)座標空間内の点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(2,\ -1,\ -1)$,$\mathrm{C}(-1,\ -2,\ -4)$,$\mathrm{D}(3,\ 2,\ 6)$に対して,三角形$\mathrm{ABC}$の重心を$\mathrm{M}$とし,三角形$\mathrm{ABD}$の重心を$\mathrm{N}$とする.このとき,点$\mathrm{M}$の座標は$[ア]$である.また,線分$\mathrm{MN}$を$4:3$に外分する点の座標は$[イ]$である.
(2)$\alpha=-1+2i$とする.$x=\alpha$が$2$次方程式$x^2+ax+b=0$の解であるような実数の組$(a,\ b)$は$(a,\ b)=[ウ]$である.また$\alpha^5+2 \alpha^4+3 \alpha^3+4 \alpha^2+5 \alpha$の値は$[エ]$である.
(3)関数$f(x)$が$\displaystyle f(x)=2x^2+3x+\int_0^{\frac{1}{2}} f(t) \, dt$を満たすとき,$f(x)=[オ]$である.
(4)$3$個のさいころを同時に投げるとき,以下の確率を求めなさい.

(i) 出る目の最大値が$4$以下である確率は$[カ]$である.
(ii) 出る目の最大値が$4$である確率は$[キ]$である.
(iii) 出る目の最大値が$4$であるとき,少なくとも$1$個のさいころの目が$1$である確率は$[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
$6$枚の硬貨に$1$から$6$まで番号を$1$つずつ付け,はじめにすべて表向きにして並べておき,以下の操作を繰り返す.
\begin{waku}[操作]
さいころを$2$個投げて出た目の小さい方から大きい方までの番号の硬貨を裏返す.ただし,$2$個のさいころの目が同じ場合はその番号の硬貨のみを裏返す.
\end{waku}
たとえば,$1$回目にさいころを$2$個投げて$2$と$4$の目が出たとすると,番号$2,\ 3,\ 4$の硬貨を裏返すので硬貨の向きは番号$1$の硬貨から順に表,裏,裏,裏,表,表となる.続いて$2$回目にさいころを$2$個投げて$2$個とも$3$の目が出たとすると,番号$3$の硬貨のみを裏返すので硬貨の向きは番号$1$の硬貨から順に表,裏,表,裏,表,表となる.

(1)$1$回目の操作を終えたとき番号$3$の硬貨の向きが表である確率は$[コ]$であり,$2$回目の操作を終えたとき番号$3$の硬貨の向きが表である確率は$[サ]$である.また,$2$回目の操作を終えたとき番号$3$と番号$4$の硬貨のうち少なくとも一方の向きが表である確率は$[シ]$である.
(2)$n$回目の操作を終えたとき番号$3$と番号$4$の$2$つの硬貨の向きがともに表である確率を$p_n$,ともに裏である確率を$q_n$とする.このとき,関係式

$p_{n+1}-q_{n+1}=[ス](p_n-q_n)+[セ]$
$p_{n+1}+q_{n+1}=[ソ](p_n+q_n)+[タ]$

が成り立ち,$p_n$を$n$を用いて表すと$p_n=[チ]$となる.ただし,$[ス]$~$[タ]$には数を記入すること.
早稲田大学 私立 早稲田大学 2016年 第2問
次の問に答えよ.

(1)負でない実数の数列$a_1,\ a_2,\ \cdots$は,すべての$n=1,\ 2,\ \cdots$に対して
\[ a_{n+1}=\sqrt{a_n} \]
を満たしているとする.このとき,次の各問いに答えよ.

(i) $a_1=256$であるとき,$a_4$は$[コ]$であり,$2^{-\frac{1}{100}} \leqq a_n \leqq 2^{\frac{1}{100}}$を満たす最小の自然数$n$は$[サ]$である.
(ii) $\displaystyle a_1=\frac{1}{256}$であるとき,$a_4$は$[シ]$であり,$2^{-\frac{1}{100}} \leqq a_n \leqq 2^{\frac{1}{100}}$を満たす最小の自然数$n$は$[ス]$である.
(iii) $a_1=a_2=a_3=\cdots$となるような初項$a_1$は$[セ]$個存在する.

(2)$1$つのサイコロを何回か投げる場合を考える.$4$回投げたとき,$1$または$2$の目が奇数回出る確率は$[ソ]$である.また,$n$回投げたときに$1$または$2$の目が奇数回出る確率を$p_n$とするとき,$p_n$を$n$の式で表すと$[タ]$である.
早稲田大学 私立 早稲田大学 2016年 第1問
次の各問の解答を記入せよ.

(1)正の整数$a$に対して,ある整数$b$が存在して$63a-32b=1$を満たすとする.$a$はこのような性質を満たす正の整数のうちで最小のものであるとする.このとき$ab$の値を求めよ.
(2)$3$個のさいころを同時に投げたとき,出た目すべての積が$4$の倍数となる確率を求めよ.
(3)$a_1=a_2=1$,$a_{n+2}=a_n+a_{n+1} (n=1,\ 2,\ 3,\ \cdots)$とし,
\[ b_n=\sum_{k=1}^n a_k \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおく.$b_1$から$b_{2016}$までの$2016$個の整数のうち$3$の倍数であるものは全部で何個あるか.
(4)$y=f(x)$は$0 \leqq x \leqq 1$で定義された連続な関数で$f(0)=0$,$f(1)=1$であり,$0 \leqq x_1<x_2 \leqq 1$であるすべての$x_1,\ x_2$に対して$f(x_1)<f(x_2)$を満たしているとする.$x=g(y)$を$0 \leqq y \leqq 1$で定義された$f$の逆関数とする.
\[ 5 \int_0^1 f(x) \, dx=2 \int_0^1 g(y) \, dy \]
が成立しているとき$\displaystyle \int_0^1 f(x) \, dx$の値を求めよ.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$2x+3y=2$のとき,$x^2 \leqq y \leqq 2x$を満たす$x$の範囲は,
\[ [ア] \leqq x \leqq [イ] \]
である.
(2)$3$個のさいころを同時に投げて出た目の積$M$が奇数となる確率は$[ウ]$である.また,$M$を$3$で割ったときの余りが$2$となる確率は$[エ]$である.
名城大学 私立 名城大学 2016年 第3問
$1$個のさいころを$3$回投げるとき,出る目の最大値を$m$とする.ただし,すべての目が等しいときは,それを$m$とする.

(1)$m=4$となる確率を求めよ.
(2)$m=k$となる確率を$p_k$とするとき,$p_k$を$k$を用いて表せ.ただし,$2 \leqq k \leqq 6$とする.
(3)$(2)$で求めた$p_k$を最大にする$k$の値を求めよ.
スポンサーリンク

「さいころ」とは・・・

 まだこのタグの説明は執筆されていません。