タグ「z^2」の検索結果

1ページ目:全57問中1問~10問を表示)
北海道大学 国立 北海道大学 2016年 第1問
複素数平面上の点$0$を中心とする半径$2$の円$C$上に点$z$がある.$a$を実数の定数とし,
\[ w=z^2-2az+1 \]
とおく.

(1)$|w|^2$を$z$の実部$x$と$a$を用いて表せ.
(2)点$z$が$C$上を一周するとき,$|w|$の最小値を$a$を用いて表せ.
東京大学 国立 東京大学 2016年 第4問
$z$を複素数とする.複素数平面上の$3$点$\mathrm{A}(1)$,$\mathrm{B}(z)$,$\mathrm{C}(z^2)$が鋭角三角形をなすような$z$の範囲を求め,図示せよ.
千葉大学 国立 千葉大学 2016年 第3問
$\displaystyle z=\cos \frac{2\pi}{7}+i \sin \frac{2\pi}{7}$($i$は虚数単位)とおく.

(1)$z+z^2+z^3+z^4+z^5+z^6$を求めよ.
(2)$\alpha=z+z^2+z^4$とするとき,$\alpha+\overline{\alpha}$,$\alpha \overline{\alpha}$および$\alpha$を求めよ.ただし,$\overline{\alpha}$は$\alpha$の共役複素数である.
(3)$(1-z)(1-z^2)(1-z^3)(1-z^4)(1-z^5)(1-z^6)$を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
$\displaystyle z=\cos \frac{2\pi}{7}+i \sin \frac{2\pi}{7}$($i$は虚数単位)とおく.

(1)$z+z^2+z^3+z^4+z^5+z^6$を求めよ.
(2)$\alpha=z+z^2+z^4$とするとき,$\alpha+\overline{\alpha}$,$\alpha \overline{\alpha}$および$\alpha$を求めよ.ただし,$\overline{\alpha}$は$\alpha$の共役複素数である.
(3)$(1-z)(1-z^2)(1-z^3)(1-z^4)(1-z^5)(1-z^6)$を求めよ.
千葉大学 国立 千葉大学 2016年 第4問
$\displaystyle z=\cos \frac{2\pi}{7}+i \sin \frac{2\pi}{7}$($i$は虚数単位)とおく.

(1)$z+z^2+z^3+z^4+z^5+z^6$を求めよ.
(2)$\alpha=z+z^2+z^4$とするとき,$\alpha+\overline{\alpha}$,$\alpha \overline{\alpha}$および$\alpha$を求めよ.ただし,$\overline{\alpha}$は$\alpha$の共役複素数である.
(3)$(1-z)(1-z^2)(1-z^3)(1-z^4)(1-z^5)(1-z^6)$を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
宮崎大学 国立 宮崎大学 2016年 第3問
複素数$z$の方程式$z^3+i=z^2+iz$($i$は虚数単位)の$3$つの解を,その偏角$\theta$(ただし,$0 \leqq \theta<2\pi$)の小さい順に$\alpha,\ \beta,\ \gamma$とする.複素数平面上で,$\alpha,\ \beta,\ \gamma$を表す点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とし,直線$\mathrm{AC}$に関して$\mathrm{B}$と対称な点を$\mathrm{D}$,直線$\mathrm{AB}$に関して$\mathrm{C}$と対称な点を$\mathrm{E}$とする.このとき,次の各問に答えよ.

(1)$\alpha,\ \beta,\ \gamma$を$x+yi$($x,\ y$は実数)の形でそれぞれ表せ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)複素数平面上で,$3$点$\mathrm{A}$,$\mathrm{D}$,$\mathrm{E}$を通る円周上のどの複素数$z$も,$z \overline{z}+sz+t \overline{z}+u=0$を満たすような複素数の定数$s,\ t,\ u$を求めよ.
佐賀大学 国立 佐賀大学 2016年 第3問
$0$でない複素数$z$の極形式を$r(\cos \theta+i \sin \theta)$とするとき,次の複素数を極形式で表せ.ただし,$0 \leqq \theta<2\pi$とし,また$z$と共役な複素数を$\overline{z}$で表す.

(1)$-\overline{z}$

(2)$\displaystyle \frac{1}{z^2}$

(3)$z-|z|$
琉球大学 国立 琉球大学 2016年 第1問
$i$を虚数単位とし,$\displaystyle z=\cos \frac{2\pi}{5}+i \sin \frac{2\pi}{5}$とおく.次の問いに答えよ.

(1)$z^5$および$z^4+z^3+z^2+z+1$の値を求めよ.
(2)$\displaystyle t=z+\frac{1}{z}$とおく.$t^2+t$の値を求めよ.
(3)$\displaystyle \cos \frac{2\pi}{5}$の値を求めよ.
(4)半径$1$の円に内接する正五角形の$1$辺の長さの$2$乗を求めよ.
スポンサーリンク

「z^2」とは・・・

 まだこのタグの説明は執筆されていません。