タグ「x^2」の検索結果

5ページ目:全2330問中41問~50問を表示)
大阪大学 国立 大阪大学 2016年 第3問
座標平面において,原点$\mathrm{O}$を中心とする半径$r$の円と放物線$y=\sqrt{2}(x-1)^2$は,ただ$1$つの共有点$(a,\ b)$をもつとする.

(1)$a,\ b,\ r$の値をそれぞれ求めよ.
(2)連立不等式
\[ a \leqq x \leqq 1,\quad 0 \leqq y \leqq \sqrt{2}(x-1)^2,\quad x^2+y^2 \geqq r^2 \]
の表す領域を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
群馬大学 国立 群馬大学 2016年 第1問
$a$は実数とする.関数$f(x)=2x^2-4 |x|+a$と$g(x)=|x|-a$について,次の問いに答えよ.

(1)$2$つの関数のグラフの共有点の個数とそのときの$a$の値の範囲を求めよ.
(2)$2$つの関数のグラフが共有点をもつとき,それらの$x$座標の絶対値がすべて$1$以上かつ$3$以下になるような$a$の値の範囲を求めよ.
埼玉大学 国立 埼玉大学 2016年 第3問
次の問いに答えよ.

(1)$\displaystyle f(x)=\frac{e^x}{x^2+3x+1}$とする.$x>0$の範囲で$f(x)$が最小になる$x$の値と,そのときの$f(x)$の値を求めよ.
(2)$a>0$とする.曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と$2$つの直線$\ell_1:y=2e^ax$,$\ell_2:y=(a^2+3a+1)x$を考える.$C$と$\ell_1$と$\ell_2$で囲まれる部分を$D$とする.

\mon[(ア)] $C$と$\ell_1$の交点,および,$C$と$\ell_2$の交点の座標を求めよ.
\mon[(イ)] $(1)$を用いて$2e^a>a^2+3a+1$であることを示せ.ただし,$e=2.7182 \cdots$であることは用いてよい.
\mon[(ウ)] $D$の面積を$a$を用いて表せ.
\mon[(エ)] $D$の面積を最小にする$a$の値と,そのときの$D$の面積を求めよ.
群馬大学 国立 群馬大学 2016年 第1問
$a>0$とする.関数$f(x)=2x^2-4 |x|+a$と$g(x)=|x|-a$について,次の問いに答えよ.

(1)$a=1$のときの$2$つの関数のグラフをかけ.
(2)$2$つの関数のグラフが$2$つの共有点をもつときの$a$の値を求めよ.
(3)$2$つの関数のグラフが共有点をもつとき,それらの$x$座標の絶対値がすべて$1$以上かつ$3$以下になるような$a$の値の範囲を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第5問
点$\mathrm{P}$は$x$座標が正または$0$の範囲で放物線$\displaystyle y=1-\frac{x^2}{2}$上を動くとする.点$\mathrm{P}$における放物線$\displaystyle y=1-\frac{x^2}{2}$の法線を$m$として,法線$m$と$x$軸とのなす角を$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$とする.法線$m$上の点$\mathrm{Q}$は$\mathrm{PQ}=1$を満たし,不等式$\displaystyle y>1-\frac{x^2}{2}$の表す領域にあるとする.点$\mathrm{Q}$の軌跡を$C$とし,次の問いに答えよ.

(1)点$\mathrm{P},\ \mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)曲線$C$と$x$軸との交点の座標を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{\sin \theta} \, d\theta$を$t=\cos \theta$と置換することにより求めよ.

(4)不定積分$\displaystyle \int \frac{1}{\sin^2 \theta} \, d\theta$,$\displaystyle \int \frac{1}{\sin^4 \theta} \, d\theta$を$\displaystyle t=\frac{\cos \theta}{\sin \theta}$と置換することにより求めよ.

(5)曲線$C$と$x$軸および$y$軸により囲まれた図形の面積を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第3問
$k$を実数として$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-x^2+4x+k \]
を考える.点$\mathrm{P}(a,\ a^2)$における$C_1$の接線を$\ell$とする.$C_2$は$\ell$に点$\mathrm{Q}$で接するとして,点$\mathrm{Q}$の$x$座標を$b$とする.不等式$a>b>0$が成り立つとする.$C_1$と$\ell$および$x$軸で囲まれた図形の面積を$S(a)$とし,$C_2$と$\ell$および$y$軸で囲まれた図形の面積を$T(a)$とする.次の問いに答えよ.

(1)$\ell$の方程式を$a$を用いて表せ.
(2)$k,\ b$をそれぞれ$a$を用いて表せ.
(3)$S(a),\ T(a)$をそれぞれ$a$を用いて表せ.
(4)$a$が条件$a>b>0$を満たすように動くとき,$S(a)+T(a)$の最小値とそのときの$a$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第3問
$k$を実数として$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-x^2+4x+k \]
を考える.点$\mathrm{P}(a,\ a^2)$における$C_1$の接線を$\ell$とする.$C_2$は$\ell$に点$\mathrm{Q}$で接するとして,点$\mathrm{Q}$の$x$座標を$b$とする.不等式$a>b>0$が成り立つとする.$C_1$と$\ell$および$x$軸で囲まれた図形の面積を$S(a)$とし,$C_2$と$\ell$および$y$軸で囲まれた図形の面積を$T(a)$とする.次の問いに答えよ.

(1)$\ell$の方程式を$a$を用いて表せ.
(2)$k,\ b$をそれぞれ$a$を用いて表せ.
(3)$S(a),\ T(a)$をそれぞれ$a$を用いて表せ.
(4)$a$が条件$a>b>0$を満たすように動くとき,$S(a)+T(a)$の最小値とそのときの$a$の値を求めよ.
信州大学 国立 信州大学 2016年 第2問
曲線$C:y=x^2$と,$C$上の点$\mathrm{P}_1(-1,\ 1)$と$\mathrm{P}_2(3,\ 9)$を考える.線分$\mathrm{P}_1 \mathrm{P}_2$を$1:3$に内分する点を$\mathrm{H}$,$\mathrm{P}_1$における接線と$\mathrm{P}_2$における接線の交点を$\mathrm{Q}$,線分$\mathrm{HQ}$と曲線$C$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\mathrm{HQ}$の方程式を求めよ.
(4)点$\mathrm{R}$の座標を求めよ.
(5)線分$\mathrm{P}_2 \mathrm{H}$と線分$\mathrm{HR}$と曲線$C$で囲まれた部分の面積を求めよ.
信州大学 国立 信州大学 2016年 第1問
曲線$C:y=x^2$と,$C$上の点$\mathrm{P}_1(-1,\ 1)$と$\mathrm{P}_2(3,\ 9)$を考える.線分$\mathrm{P}_1 \mathrm{P}_2$を$1:3$に内分する点を$\mathrm{H}$,$\mathrm{P}_1$における接線と$\mathrm{P}_2$における接線の交点を$\mathrm{Q}$,線分$\mathrm{HQ}$と曲線$C$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\mathrm{HQ}$の方程式を求めよ.
(4)点$\mathrm{R}$の座標を求めよ.
(5)線分$\mathrm{P}_2 \mathrm{H}$と線分$\mathrm{HR}$と曲線$C$で囲まれた部分の面積を求めよ.
信州大学 国立 信州大学 2016年 第4問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
スポンサーリンク

「x^2」とは・・・

 まだこのタグの説明は執筆されていません。