タグ「面積」の検索結果

7ページ目:全2409問中61問~70問を表示)
宮城教育大学 国立 宮城教育大学 2016年 第3問
$k$を実数として$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-x^2+4x+k \]
を考える.点$\mathrm{P}(a,\ a^2)$における$C_1$の接線を$\ell$とする.$C_2$は$\ell$に点$\mathrm{Q}$で接するとして,点$\mathrm{Q}$の$x$座標を$b$とする.不等式$a>b>0$が成り立つとする.$C_1$と$\ell$および$x$軸で囲まれた図形の面積を$S(a)$とし,$C_2$と$\ell$および$y$軸で囲まれた図形の面積を$T(a)$とする.次の問いに答えよ.

(1)$\ell$の方程式を$a$を用いて表せ.
(2)$k,\ b$をそれぞれ$a$を用いて表せ.
(3)$S(a),\ T(a)$をそれぞれ$a$を用いて表せ.
(4)$a$が条件$a>b>0$を満たすように動くとき,$S(a)+T(a)$の最小値とそのときの$a$の値を求めよ.
信州大学 国立 信州大学 2016年 第2問
曲線$C:y=x^2$と,$C$上の点$\mathrm{P}_1(-1,\ 1)$と$\mathrm{P}_2(3,\ 9)$を考える.線分$\mathrm{P}_1 \mathrm{P}_2$を$1:3$に内分する点を$\mathrm{H}$,$\mathrm{P}_1$における接線と$\mathrm{P}_2$における接線の交点を$\mathrm{Q}$,線分$\mathrm{HQ}$と曲線$C$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\mathrm{HQ}$の方程式を求めよ.
(4)点$\mathrm{R}$の座標を求めよ.
(5)線分$\mathrm{P}_2 \mathrm{H}$と線分$\mathrm{HR}$と曲線$C$で囲まれた部分の面積を求めよ.
信州大学 国立 信州大学 2016年 第1問
曲線$C:y=x^2$と,$C$上の点$\mathrm{P}_1(-1,\ 1)$と$\mathrm{P}_2(3,\ 9)$を考える.線分$\mathrm{P}_1 \mathrm{P}_2$を$1:3$に内分する点を$\mathrm{H}$,$\mathrm{P}_1$における接線と$\mathrm{P}_2$における接線の交点を$\mathrm{Q}$,線分$\mathrm{HQ}$と曲線$C$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\mathrm{HQ}$の方程式を求めよ.
(4)点$\mathrm{R}$の座標を求めよ.
(5)線分$\mathrm{P}_2 \mathrm{H}$と線分$\mathrm{HR}$と曲線$C$で囲まれた部分の面積を求めよ.
信州大学 国立 信州大学 2016年 第1問
曲線$C:y=x^2$と,$C$上の点$\mathrm{P}_1(-1,\ 1)$と$\mathrm{P}_2(3,\ 9)$を考える.線分$\mathrm{P}_1 \mathrm{P}_2$を$1:3$に内分する点を$\mathrm{H}$,$\mathrm{P}_1$における接線と$\mathrm{P}_2$における接線の交点を$\mathrm{Q}$,線分$\mathrm{HQ}$と曲線$C$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\mathrm{HQ}$の方程式を求めよ.
(4)点$\mathrm{R}$の座標を求めよ.
(5)線分$\mathrm{P}_2 \mathrm{H}$と線分$\mathrm{HR}$と曲線$C$で囲まれた部分の面積を求めよ.
信州大学 国立 信州大学 2016年 第3問
平面上の点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$のなす角を$\displaystyle \beta \left( 0<\beta<\frac{\pi}{2} \right)$とする.さらに,
\[ \angle \mathrm{BOC}=\alpha+\beta,\quad |\overrightarrow{\mathrm{OB|}}=2 |\overrightarrow{\mathrm{OA|}}=4 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1 \]
であるとする.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$,$\triangle \mathrm{OBC}$の面積をそれぞれ$s,\ t,\ u$とする.このとき,以下の問いに答えよ.

(1)$s,\ t,\ u$を,それぞれ$\alpha,\ \beta$を用いて表せ.
(2)$2s=2t=u$であるとき,$\alpha$と$\beta$を求めよ.
信州大学 国立 信州大学 2016年 第2問
平面上の点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$のなす角を$\displaystyle \beta \left( 0<\beta<\frac{\pi}{2} \right)$とする.さらに,
\[ \angle \mathrm{BOC}=\alpha+\beta,\quad |\overrightarrow{\mathrm{OB|}}=2 |\overrightarrow{\mathrm{OA|}}=4 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1 \]
であるとする.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$,$\triangle \mathrm{OBC}$の面積をそれぞれ$s,\ t,\ u$とする.このとき,以下の問いに答えよ.

(1)$s,\ t,\ u$を,それぞれ$\alpha,\ \beta$を用いて表せ.
(2)$2s=2t=u$であるとき,$\alpha$と$\beta$を求めよ.
香川大学 国立 香川大学 2016年 第2問
\begin{mawarikomi}{50mm}{
(図は省略)
}
図のような,一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.対角線$\mathrm{OF}$上に点$\mathrm{P}$をとり,$\mathrm{OP}=x$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}$を通り対角線$\mathrm{OF}$と直交する平面で,立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を切る.その切り口の多角形の面積$S(x)$を$x$を用いて表せ.
(2)関数$y=S(x)$のグラフをかけ.

(3)定積分$\displaystyle \int_0^{\frac{2 \sqrt{3}}{3}} S(x) \, dx$を求めよ.

\end{mawarikomi}
信州大学 国立 信州大学 2016年 第2問
平面上の点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$のなす角を$\displaystyle \beta \left( 0<\beta<\frac{\pi}{2} \right)$とする.さらに,
\[ \angle \mathrm{BOC}=\alpha+\beta,\quad |\overrightarrow{\mathrm{OB|}}=2 |\overrightarrow{\mathrm{OA|}}=4 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1 \]
であるとする.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$,$\triangle \mathrm{OBC}$の面積をそれぞれ$s,\ t,\ u$とする.このとき,以下の問いに答えよ.

(1)$s,\ t,\ u$を,それぞれ$\alpha,\ \beta$を用いて表せ.
(2)$2s=2t=u$であるとき,$\alpha$と$\beta$を求めよ.
岩手大学 国立 岩手大学 2016年 第4問
曲線$y=-x^3+3x^2+x-3$を$C$とし,曲線$C$上の点$(3,\ 0)$における接線を$\ell$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$p$を実数とし,点$(p,\ q_1)$は接線$\ell$上にあり,点$(p,\ q_2)$は曲線$C$上にあるとする.$p<3$の範囲を$p$が動くとき,$q_1-q_2$の最大値を求めよ.
(3)接線$\ell$と曲線$C$で囲まれた図形は,$y$軸によって$2$つの部分に分けられるが,それらの面積のうち小さい方を$S$,大きい方を$T$とするとき,$\displaystyle \frac{T}{S}$の値を求めよ.
東京農工大学 国立 東京農工大学 2016年 第1問
$\mathrm{O}$を原点とする座標空間に$4$点$\mathrm{A}(1,\ -2,\ -2)$,$\mathrm{B}(-1,\ -4,\ 0)$,$\mathrm{C}(2,\ 2,\ -4)$,$\mathrm{D}(2,\ 4,\ -4)$をとる.また,線分$\mathrm{AB}$を$t:(1+t)$に外分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:2$に外分する点を$\mathrm{Q}$とおく.ただし,$t$は正の実数とする.次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OP}}$の成分を$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{CP}}$が垂直であるとき,$t$の値を求めよ.
(3)実数$r,\ s$について$\overrightarrow{\mathrm{DP}}=r \overrightarrow{\mathrm{DC}}+s \overrightarrow{\mathrm{DQ}}$が成り立つとする.このとき,$r,\ s,\ t$の値を求めよ.
(4)$t$が$(3)$で求めた値のとき,直線$\mathrm{DP}$と直線$\mathrm{CQ}$の交点の座標を求めよ.
(5)$\triangle \mathrm{CDP}$の面積を$S(t)$とする.$S(t)$の最小値を求めよ.また,そのときの$t$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。