タグ「関数」の検索結果

2ページ目:全2213問中11問~20問を表示)
北海道大学 国立 北海道大学 2016年 第2問
$f(x)=|x(x-2)|+|(x-1)(x-4)|+3x-10 (-2 \leqq x \leqq 4)$とおく.

(1)関数$y=f(x)$のグラフをかけ.グラフと$x$軸との$2$つの交点の$x$座標$\alpha$,$\beta (\alpha<\beta)$の値も求めよ.
(2)$(1)$の$\alpha,\ \beta$に対して,定積分$\displaystyle \int_{\alpha}^{\beta} f(x) \, dx$の値を求めよ.
山口大学 国立 山口大学 2016年 第1問
関数$f(x)=|x^3-3x^2-3x+1|$について,次の問いに答えなさい.

(1)方程式$f(x)=0$の実数解をすべて求めなさい.
(2)$f(x)$の増減,極値を調べ,$y=f(x)$のグラフをかきなさい.ただし,グラフの変曲点と凹凸は調べなくてよい.
(3)$a$を実数の定数とする.$x$についての方程式$f(x)=a$が,ちょうど$4$個の異なる実数解をもつように,$a$の値の範囲を定めなさい.
広島大学 国立 広島大学 2016年 第2問
次の問いに答えよ.

(1)$a$を正の定数とする.関数$\displaystyle f(x)=\frac{e^x-ae^{-x}}{2}$の逆関数$f^{-1}(x)$を求めよ.
(2)$(1)$で求めた$f^{-1}(x)$の導関数を求めよ.
(3)$c$を正の定数とする.$x$軸,$y$軸,直線$x=c$および曲線$\displaystyle y=\frac{1}{\sqrt{x^2+c^2}}$で囲まれる部分の面積を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第1問
関数$\displaystyle f(x)=\frac{x-1}{x^2+1}$のグラフを曲線$C$とする.

(1)関数$f(x)$の極値を求めよ.
(2)曲線$C$の変曲点を求めよ.
(3)曲線$C$上の点$(0,\ f(0))$における接線を$\ell$とする.曲線$C$と接線$\ell$とで囲まれた図形の面積$S$を求めよ.
山口大学 国立 山口大学 2016年 第4問
$n$を自然数とする.このとき,次の問いに答えなさい.

(1)$\alpha,\ \beta$を実数とし,
\[ f(x)=\frac{\alpha}{x-\alpha}-\frac{\beta}{x-\beta} \]
とする.$f(x)$の第$n$次導関数$f^{(n)}(x)$について,次の等式が成り立つことを,数学的帰納法によって証明しなさい.
\[ f^{(n)}(x)={(-1)}^n n! \left\{ \frac{\alpha}{{(x-\alpha)}^{n+1}}-\frac{\beta}{{(x-\beta)}^{n+1}} \right\} \]
(2)$b,\ c$を$b^2>4c$を満たす実数とし,
\[ h(x)=\frac{x}{x^2-bx+c} \]
とする.また,$h(x)$の第$n$次導関数$h^{(n)}(x)$に対し,$\displaystyle a_n=\frac{c^nh^{(n)}(0)}{n!}$とおく.

(i) $2$次方程式$x^2-bx+c=0$の解を$\alpha,\ \beta$とする.$a_n$を$\alpha,\ \beta,\ n$を用いて表しなさい.
(ii) $a_{n+2}-ba_{n+1}+ca_n=0$が成り立つことを示しなさい.
岡山大学 国立 岡山大学 2016年 第4問
関数$f(x)=8x^3-6x-1$について,以下の問いに答えよ.

(1)$f(x)=0$を満たす実数$x$の個数を求めよ.

(2)$\displaystyle a=\cos \frac{5\pi}{9}$とするとき,$f(a)$の値を求めよ.

(3)不等式
\[ -\frac{1}{5}<\cos \frac{5 \pi}{9}<-\frac{1}{6} \]
を証明せよ.
岡山大学 国立 岡山大学 2016年 第2問
関数$f(x)=8x^3-6x-1$について,以下の問いに答えよ.

(1)$f(x)=0$を満たす実数$x$の個数を求めよ.

(2)$\displaystyle a=\cos \frac{5\pi}{9}$とするとき,$f(a)$の値を求めよ.

(3)不等式
\[ -\frac{1}{5}<\cos \frac{5 \pi}{9}<-\frac{1}{6} \]
を証明せよ.
岡山大学 国立 岡山大学 2016年 第3問
$a$は正の数とし,次の関数$y=f_a(x)$のグラフの変曲点を$\mathrm{P}$とする.
\[ f_a(x)=axe^{-\frac{x}{a}} \quad (x \geqq 0) \]
このとき以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)$a$が区間$1 \leqq a \leqq 2$全体を動くとき,点$\mathrm{P}$が描く曲線$C$の概形を図示せよ.
(3)$x \geqq 0$における曲線$y=f_1(x)$,$y=f_2(x)$と$(2)$の曲線$C$の$3$曲線で囲まれた部分の面積を求めよ.
金沢大学 国立 金沢大学 2016年 第4問
$a,\ b$を実数とする.$f(x)=2 \sqrt{1+x^2}-ax^2$とし,$x$についての方程式$f(x)=b$を考える.次の問いに答えよ.

(1)$a>0$のとき,関数$f(x)$の最大値を求めよ.
(2)方程式$f(x)=b$の異なる実数解の個数が最も多くなるときの点$(a,\ b)$の範囲を図示せよ.
埼玉大学 国立 埼玉大学 2016年 第2問
$\displaystyle f(x)=\frac{3^x-1}{3^x+1},\ g(x)=\frac{x^2+4x+1}{2(x^2+x+1)}$とする.次の問いに答えよ.

(1)$g(f(x))=f(2x+1)$が成り立つことを示せ.
(2)数列$\{a_n\}$を
\[ a_1=1,\quad a_{n+1}=2a_n+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定め,数列$\{b_n\}$を
\[ b_1=\frac{1}{2},\quad b_{n+1}=g(b_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.

\mon[(ア)] $b_n=f(a_n) (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを数学的帰納法を用いて示せ.
\mon[(イ)] 数列$\{a_n\},\ \{b_n\}$の一般項をそれぞれ求めよ.
\mon[(ウ)] $\displaystyle \lim_{n \to \infty} b_n$を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。