「関数」について
タグ「関数」の検索結果
(19ページ目:全2213問中181問~190問を表示) 私立 名城大学 2016年 第4問
$f(x)=e^{-x} \sin x,\ g(x)=e^{-x} \cos x$とするとき,次の各問に答えよ.
(1)導関数$f^\prime(x)$を求めよ.
(2)すべての$x$について,$f^\prime(x)=af(x+b)$が成り立つような定数$a,\ b$を求めよ.ただし,$0 \leqq b \leqq \pi$とする.
(3)$\displaystyle \frac{\pi}{4} \leqq x \leqq \frac{5\pi}{4}$において,曲線$y=f(x)$と$y=g(x)$で囲まれた部分の面積を求めよ.
(1)導関数$f^\prime(x)$を求めよ.
(2)すべての$x$について,$f^\prime(x)=af(x+b)$が成り立つような定数$a,\ b$を求めよ.ただし,$0 \leqq b \leqq \pi$とする.
(3)$\displaystyle \frac{\pi}{4} \leqq x \leqq \frac{5\pi}{4}$において,曲線$y=f(x)$と$y=g(x)$で囲まれた部分の面積を求めよ.
私立 名城大学 2016年 第4問
$f(x)=2x^3+(a-1)x^2-a+1$($a$は$a \neq 1$を満たす実数)とするとき,次の問に答えよ.
(1)$y=f(x)$のグラフは$a$の値によらず$2$定点を通ることを示し,その座標を求めよ.
(2)$f(x)$の極大値を与える$x$の値$m$を求めよ.
(3)$a$が$a \neq 1$を満たす実数全体を動く.$(2)$の$m$に対し,点$(m,\ f(m))$の軌跡を$xy$平面上に図示せよ.
(1)$y=f(x)$のグラフは$a$の値によらず$2$定点を通ることを示し,その座標を求めよ.
(2)$f(x)$の極大値を与える$x$の値$m$を求めよ.
(3)$a$が$a \neq 1$を満たす実数全体を動く.$(2)$の$m$に対し,点$(m,\ f(m))$の軌跡を$xy$平面上に図示せよ.
私立 名城大学 2016年 第1問
次の$[ ]$を埋めよ.
(1)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{2}$のとき,$x^2+y^2=[ア]$,$x^2-y^2=[イ]$である.
(2)関数$y=-2x^2+6x-5 (0 \leqq x \leqq 2)$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)円$C_1:x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と点$\mathrm{A}(3,\ 0)$の中点$\mathrm{Q}$の座標は$[オ]$である.これより,$\mathrm{P}$が$C_1$上をもれなく動くとき,$\mathrm{Q}$の描く軌跡は円であり,その方程式は$[カ]$である.
(4)放物線$C_2:y=x^2-2x$と直線$\ell:y=x$がある.$C_2$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C_2$と$\ell$によって囲まれる部分の面積は$[ク]$である.
(1)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{2}$のとき,$x^2+y^2=[ア]$,$x^2-y^2=[イ]$である.
(2)関数$y=-2x^2+6x-5 (0 \leqq x \leqq 2)$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)円$C_1:x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と点$\mathrm{A}(3,\ 0)$の中点$\mathrm{Q}$の座標は$[オ]$である.これより,$\mathrm{P}$が$C_1$上をもれなく動くとき,$\mathrm{Q}$の描く軌跡は円であり,その方程式は$[カ]$である.
(4)放物線$C_2:y=x^2-2x$と直線$\ell:y=x$がある.$C_2$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C_2$と$\ell$によって囲まれる部分の面積は$[ク]$である.
私立 北星学園大学 2016年 第2問
$2$つの関数$f(x)=-x^2+2x+3$,$g(x)=x^2-a^2$(ただし,$a>0$)について,以下の問いに答えよ.
(1)$f(x)>0$を満たす整数$x$の値を求めよ.
(2)$f(x)>0,\ g(x)<0$を同時に満たす整数$x$の個数と,そのときの定数$a$の値の範囲を求めよ.
(1)$f(x)>0$を満たす整数$x$の値を求めよ.
(2)$f(x)>0,\ g(x)<0$を同時に満たす整数$x$の個数と,そのときの定数$a$の値の範囲を求めよ.
私立 北里大学 2016年 第1問
次の文中の$[ア]$~$[ヌ]$にあてはまる最も適切な数値を答えなさい.
(1)平面上のベクトル$\overrightarrow{a}$と$\overrightarrow{b}$が
\[ |\overrightarrow{a|}=2,\quad |\overrightarrow{b|}=\sqrt{3},\quad |\overrightarrow{a|-2 \overrightarrow{b}}=2 \sqrt{2} \]
を満たすとき$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.また$|\overrightarrow{a|+t \overrightarrow{b}}$を最小にする実数$t$の値は$\displaystyle \frac{[イ]}{[ウ]}$である.
(2)$1$次不定方程式$17x+59y=1$のすべての整数解は,$n$を任意の整数として
\[ x=59n+[エ],\quad y=-17n+[オ] \]
である.
(3)$i$を虚数単位とし,$z=-1+\sqrt{3}i$とすると,
\[ z^2=[カ]+[キ] \sqrt{3}i,\quad z^3=[ク]+[ケ] \sqrt{3}i \]
である.また,$z^n$を$n$について$1$から$9$まで足し合わせると,
\[ \sum_{n=1}^9 z^n=[コ][サ] \left( [シ]+[ス] \sqrt{3}i \right) \]
となる.
(4)$\displaystyle \log_{15}900=[セ]+\frac{[ソ]}{\log_2 [タ]+\log_2 [チ]}$である.
(5)区間$[0,\ \pi]$を定義域とする$2$つの関数$f_1(x)=\cos (x+\alpha)+d$と$f_2(x)=\cos (x-\alpha)-d$を考える.
$\displaystyle \alpha=\frac{\pi}{4},\ d=\frac{1}{4}$のとき,これら$2$つの関数のグラフの交点の$x$座標は
\[ \sin x=\frac{\sqrt{[ツ]}}{[テ]} \]
を満足する.
また,$\displaystyle \alpha=\frac{\pi}{6}$のとき,$\displaystyle d=\frac{[ト]}{[ナ]}$であればこれら$2$つの関数のグラフは,$\displaystyle x=\frac{[ニ]}{[ヌ]} \pi$で接している.
(1)平面上のベクトル$\overrightarrow{a}$と$\overrightarrow{b}$が
\[ |\overrightarrow{a|}=2,\quad |\overrightarrow{b|}=\sqrt{3},\quad |\overrightarrow{a|-2 \overrightarrow{b}}=2 \sqrt{2} \]
を満たすとき$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.また$|\overrightarrow{a|+t \overrightarrow{b}}$を最小にする実数$t$の値は$\displaystyle \frac{[イ]}{[ウ]}$である.
(2)$1$次不定方程式$17x+59y=1$のすべての整数解は,$n$を任意の整数として
\[ x=59n+[エ],\quad y=-17n+[オ] \]
である.
(3)$i$を虚数単位とし,$z=-1+\sqrt{3}i$とすると,
\[ z^2=[カ]+[キ] \sqrt{3}i,\quad z^3=[ク]+[ケ] \sqrt{3}i \]
である.また,$z^n$を$n$について$1$から$9$まで足し合わせると,
\[ \sum_{n=1}^9 z^n=[コ][サ] \left( [シ]+[ス] \sqrt{3}i \right) \]
となる.
(4)$\displaystyle \log_{15}900=[セ]+\frac{[ソ]}{\log_2 [タ]+\log_2 [チ]}$である.
(5)区間$[0,\ \pi]$を定義域とする$2$つの関数$f_1(x)=\cos (x+\alpha)+d$と$f_2(x)=\cos (x-\alpha)-d$を考える.
$\displaystyle \alpha=\frac{\pi}{4},\ d=\frac{1}{4}$のとき,これら$2$つの関数のグラフの交点の$x$座標は
\[ \sin x=\frac{\sqrt{[ツ]}}{[テ]} \]
を満足する.
また,$\displaystyle \alpha=\frac{\pi}{6}$のとき,$\displaystyle d=\frac{[ト]}{[ナ]}$であればこれら$2$つの関数のグラフは,$\displaystyle x=\frac{[ニ]}{[ヌ]} \pi$で接している.
私立 立教大学 2016年 第3問
実数$c$を$\displaystyle c<\frac{3}{2}$とし,$f(x)=(x-4)(x^2-3x-c^2+3c)$とする.このとき,次の問いに答えよ.
(1)曲線$y=f(x)$と$x$軸が異なる$3$点で交わり,それら$3$つの交点の$x$座標がすべて正となるときの$c$の値の範囲を求めよ.
(2)$(1)$の$3$つの交点の$x$座標を小さい順に並べると等差数列となるときの$c$の値を求めよ.また,このときの交点の$x$座標をすべて求めよ.
(3)$(1)$の$3$つの交点の$x$座標を小さい順に並べると等比数列となるときの$c$の値を求めよ.また,このときの交点の$x$座標をすべて求めよ.
(4)$(2)$の場合の曲線$y=f(x)$を$C_1$とし,$(2)$の場合の曲線$y=f(x)$を$C_2$とする.曲線$C_1,\ C_2$と,$y$軸で囲まれた図形の面積を求めよ.
(1)曲線$y=f(x)$と$x$軸が異なる$3$点で交わり,それら$3$つの交点の$x$座標がすべて正となるときの$c$の値の範囲を求めよ.
(2)$(1)$の$3$つの交点の$x$座標を小さい順に並べると等差数列となるときの$c$の値を求めよ.また,このときの交点の$x$座標をすべて求めよ.
(3)$(1)$の$3$つの交点の$x$座標を小さい順に並べると等比数列となるときの$c$の値を求めよ.また,このときの交点の$x$座標をすべて求めよ.
(4)$(2)$の場合の曲線$y=f(x)$を$C_1$とし,$(2)$の場合の曲線$y=f(x)$を$C_2$とする.曲線$C_1,\ C_2$と,$y$軸で囲まれた図形の面積を求めよ.
私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.
(1)$x,\ y$を実数とするとき,座標平面上の点$\mathrm{P}(3 \sin x+5 \sin y,\ 3 \cos x+5 \cos y)$と原点との距離の最小値は$[ア]$であり,最大値は$[イ]$である.
(2)$2016x+401y=1$を満たす整数$x,\ y$で$0<x<401$となるのは,$x=[ウ]$,$y=[エ]$のときである.
(3)$0 \leqq x \leqq 1$のとき,関数$f(x)=\sqrt{x}+2 \sqrt{1-x}$は,$x=[オ]$において最大値$[カ]$をとる.
(4)$\mathrm{O}$を原点とする座標空間内の$2$点$\mathrm{A}(4,\ -1,\ 3)$,$\mathrm{B}(2,\ 1,\ 1)$を通る直線と$xy$平面の交点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標は$[キ]$である.また,直線$\mathrm{AB}$と直線$\mathrm{OC}$のなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とすると,$\cos \theta=[ク]$である.
(5)袋の中に赤玉と白玉が合わせて$8$個入っている.この袋の中から$2$個の玉を同時に取り出すとき,取り出した玉が両方とも白である確率が$\displaystyle \frac{5}{14}$である.このとき,袋の中の白玉は$[ケ]$個である.また,取り出した玉を元に戻し,この袋からあらたに$2$個の玉を同時に取り出すとき,赤玉と白玉が$1$個ずつである確率は$[コ]$である.
(1)$x,\ y$を実数とするとき,座標平面上の点$\mathrm{P}(3 \sin x+5 \sin y,\ 3 \cos x+5 \cos y)$と原点との距離の最小値は$[ア]$であり,最大値は$[イ]$である.
(2)$2016x+401y=1$を満たす整数$x,\ y$で$0<x<401$となるのは,$x=[ウ]$,$y=[エ]$のときである.
(3)$0 \leqq x \leqq 1$のとき,関数$f(x)=\sqrt{x}+2 \sqrt{1-x}$は,$x=[オ]$において最大値$[カ]$をとる.
(4)$\mathrm{O}$を原点とする座標空間内の$2$点$\mathrm{A}(4,\ -1,\ 3)$,$\mathrm{B}(2,\ 1,\ 1)$を通る直線と$xy$平面の交点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標は$[キ]$である.また,直線$\mathrm{AB}$と直線$\mathrm{OC}$のなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とすると,$\cos \theta=[ク]$である.
(5)袋の中に赤玉と白玉が合わせて$8$個入っている.この袋の中から$2$個の玉を同時に取り出すとき,取り出した玉が両方とも白である確率が$\displaystyle \frac{5}{14}$である.このとき,袋の中の白玉は$[ケ]$個である.また,取り出した玉を元に戻し,この袋からあらたに$2$個の玉を同時に取り出すとき,赤玉と白玉が$1$個ずつである確率は$[コ]$である.
私立 早稲田大学 2016年 第4問
正の定数$a$に対して,$f(x)=ax^3-(2a-1)x^2-(5a+1)x+6(a-1)$とする.関数$y=f(x)$のグラフは$x$軸とちょうど$2$つの共有点をもつ.これらの共有点のうち,$x$座標の値が大きい方の点の座標は$([ス],\ 0)$であり,$\displaystyle a=\frac{[セ]}{[ソ]}$である.また,$f(x)$が極小値をとるのは,$\displaystyle x=\frac{[タ]}{[チ]}$のときである.
私立 東京都市大学 2016年 第2問
次の問に答えよ.
(1)定積分$\displaystyle \int_1^e \frac{\sqrt{1-\log x}}{x} \, dx$の値を求めよ.
(2)関数$f(x)=(x+1)2^{x-3}-2^x-1$に対し,$f^\prime(x)=0$を満たす$x$の値をすべて求めよ.
(3)$0$でない実数$a$に対し,極限値
\[ \lim_{x \to 0} \frac{\cos (a-1)x-\cos (a+1)x}{x \sin x} \]
を求めよ.
(1)定積分$\displaystyle \int_1^e \frac{\sqrt{1-\log x}}{x} \, dx$の値を求めよ.
(2)関数$f(x)=(x+1)2^{x-3}-2^x-1$に対し,$f^\prime(x)=0$を満たす$x$の値をすべて求めよ.
(3)$0$でない実数$a$に対し,極限値
\[ \lim_{x \to 0} \frac{\cos (a-1)x-\cos (a+1)x}{x \sin x} \]
を求めよ.
私立 津田塾大学 2016年 第2問
$p,\ q,\ r$を有理数とし,$f(x)=x^3+3px^2+qx+r$とする.曲線$y=f(x)$は点$(t,\ 0)$で$x$軸に接している.
(1)$f(x)=f^\prime(x)(Ax+B)+Cx+D$をみたす定数$A,\ B,\ C,\ D$を$p,\ q,\ r$を用いて表せ.
(2)$t$は有理数であることを示せ.
(1)$f(x)=f^\prime(x)(Ax+B)+Cx+D$をみたす定数$A,\ B,\ C,\ D$を$p,\ q,\ r$を用いて表せ.
(2)$t$は有理数であることを示せ.