タグ「関数」の検索結果

10ページ目:全2213問中91問~100問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
以下では$n$は$0$以上の整数とする.関係式
\[ H_0(x)=1,\quad H_{n+1}(x)=2xH_n(x)-H_n^\prime(x) \]
によって多項式$H_0(x),\ H_1(x),\ \cdots$を定め,$\displaystyle f_n(x)=H_n(x)e^{-\frac{x^2}{2}}$とおく.

(1)$-f_0^{\prime\prime}(x)+x^2f_0(x)=a_0f_0(x)$が成り立つように定数$a_0$を定めよ.
(2)$f_{n+1}(x)=xf_n(x)-f_n^\prime(x)$を示せ.
(3)$2$回微分可能な関数$f(x)$に対して,$g(x)=xf(x)-f^\prime(x)$とおく.定数$a$に対して
\[ -f^{\prime\prime}(x)+x^2f(x)=af(x) \]
が成り立つとき,
\[ -g^{\prime\prime}(x)+x^2g(x)=(a+2)g(x) \]
を示せ.
(4)$-f_n^{\prime\prime}(x)+x^2f_n(x)=a_nf_n(x)$が成り立つように定数$a_n$を定めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
関数$f(x)=x^2e^x (x>-3)$を考える.


(1)関数$y=f(x)$の極値を調べて,そのグラフをかけ.

(2)曲線$y=f(x)$上の点$(1,\ e)$における接線の方程式を求めよ.

(3)定積分$\displaystyle \int_0^1 xe^x \, dx$を求めよ.

(4)曲線$y=f(x)$と$(2)$で求めた接線と$x$軸とで囲まれた部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
$f(x)=x^3+2x^2-x-2$とし,$\mathrm{O}$を原点とする座標平面上の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(t,\ f(t))$における$C$の接線を$\ell$とおく.$\ell$が$2$直線$x=-1$,$x=1$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)接線$\ell$の方程式を求めよ.
(2)$t$が$-1<t<1$の範囲を動くとき,三角形$\mathrm{OQR}$の面積を$S(t)$とおく.$S(t)$を$t$を用いて表せ.
(3)$(2)$の$S(t)$の最小値,およびそのときの$t$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
以下では$n$は$0$以上の整数とする.関係式
\[ H_0(x)=1,\quad H_{n+1}(x)=2xH_n(x)-H_n^\prime(x) \]
によって多項式$H_0(x),\ H_1(x),\ \cdots$を定め,$\displaystyle f_n(x)=H_n(x)e^{-\frac{x^2}{2}}$とおく.

(1)$-f_0^{\prime\prime}(x)+x^2f_0(x)=a_0f_0(x)$が成り立つように定数$a_0$を定めよ.
(2)$f_{n+1}(x)=xf_n(x)-f_n^\prime(x)$を示せ.
(3)$2$回微分可能な関数$f(x)$に対して,$g(x)=xf(x)-f^\prime(x)$とおく.定数$a$に対して
\[ -f^{\prime\prime}(x)+x^2f(x)=af(x) \]
が成り立つとき,
\[ -g^{\prime\prime}(x)+x^2g(x)=(a+2)g(x) \]
を示せ.
(4)$-f_n^{\prime\prime}(x)+x^2f_n(x)=a_nf_n(x)$が成り立つように定数$a_n$を定めよ.
大分大学 国立 大分大学 2016年 第2問
自然数$n$に対して関数$y=2nx-x^2$のグラフと$x$軸で囲まれた領域(境界線を含む)$R_n$を考える.以下の問いに答えなさい.

(1)領域$R_n$に含まれる格子点($x$座標と$y$座標がともに整数である点)の数$S_n$を求めなさい.
(2)点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(2n,\ 0)$,および関数$y$の頂点を結ぶ線分で囲まれた領域(境界線を含む)に含まれる格子点の数$T_n$を求めなさい.
(3)$\displaystyle \lim_{n \to \infty} \frac{T_n}{S_n}$を求めなさい.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
鹿児島大学 国立 鹿児島大学 2016年 第6問
関数$f(x)=(\log x)^2-\log x (x>0)$を考える.次の各問いに答えよ.

(1)$f(x)=0$を満たす$x$をすべて求めよ.
(2)導関数$f^\prime(x)$および$2$次導関数$f^{\prime\prime}(x)$をそれぞれ求めよ.また関数$y=f(x)$のグラフの概形を描け.ただし関数$y=f(x)$の増減,凹凸,極限$\displaystyle \lim_{x \to 0}f(x)$,$\displaystyle \lim_{x \to \infty}f(x)$を明示すること.
(3)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
秋田大学 国立 秋田大学 2016年 第1問
$f(x)=\log_2 (x+1)+\log_2 (x-2)-2$,$g(x)=|x(x-2)|$とする.次の問いに答えよ.

(1)方程式$f(x)=0$を解け.
(2)関数$y=g(x)$のグラフの概形をかけ.
(3)曲線$y=f(x)$と$x$軸との交点の座標を$(a,\ 0)$とする.このとき,曲線$y=g(x) (-1 \leqq x \leqq a)$と$x$軸,および$2$直線$x=-1$,$x=a$で囲まれた図形の面積を求めよ.
秋田大学 国立 秋田大学 2016年 第1問
$f(x)=\log_2 (x+1)+\log_2 (x-2)-2$,$g(x)=|x(x-2)|$とする.次の問いに答えよ.

(1)方程式$f(x)=0$を解け.
(2)関数$y=g(x)$のグラフの概形をかけ.
(3)曲線$y=f(x)$と$x$軸との交点の座標を$(a,\ 0)$とする.このとき,曲線$y=g(x) (-1 \leqq x \leqq a)$と$x$軸,および$2$直線$x=-1$,$x=a$で囲まれた図形の面積を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。