タグ「長さ」の検索結果

6ページ目:全1099問中51問~60問を表示)
防衛医科大学校 国立 防衛医科大学校 2016年 第3問
四面体$\mathrm{ABCD}$において,$\triangle \mathrm{BCD}$は$1$辺の長さが$2 \sqrt{2}$の正三角形,その他$3$つの三角形は$2$辺の長さが$4$の二等辺三角形である.辺$\mathrm{AB}$を$3:2$に内分する点を$\mathrm{I}$,辺$\mathrm{AC}$を$5:1$に外分する点を$\mathrm{K}$,辺$\mathrm{BC}$と$\mathrm{IK}$の交点を$\mathrm{J}$として,以下の問に答えよ.

(1)$\mathrm{BJ}:\mathrm{JC}$,$\mathrm{IJ}:\mathrm{JK}$はそれぞれいくらか.
(2)$\mathrm{A}$から$\triangle \mathrm{BCD}$に下ろした垂線の足を$\mathrm{G}$,$\mathrm{B}$から$\triangle \mathrm{ACD}$に下ろした垂線の足を$\mathrm{H}$とする.$\mathrm{AG}$,$\mathrm{BH}$の長さはいくらか.
(3)四面体$\mathrm{JCDK}$の体積はいくらか.
琉球大学 国立 琉球大学 2016年 第1問
$i$を虚数単位とし,$\displaystyle z=\cos \frac{2\pi}{5}+i \sin \frac{2\pi}{5}$とおく.次の問いに答えよ.

(1)$z^5$および$z^4+z^3+z^2+z+1$の値を求めよ.
(2)$\displaystyle t=z+\frac{1}{z}$とおく.$t^2+t$の値を求めよ.
(3)$\displaystyle \cos \frac{2\pi}{5}$の値を求めよ.
(4)半径$1$の円に内接する正五角形の$1$辺の長さの$2$乗を求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第1問
次の各問いに答えよ.

(1)$\triangle \mathrm{ABC}$において$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\mathrm{AB}=6$,$\mathrm{BC}=5$,$\mathrm{BD}=3$のとき,辺$\mathrm{AC}$の長さを求めよ.
(2)自然数$n$が$6$と互いに素であるとき,$n^2-1$が$6$で割り切れることを示せ.
(3)$xy$平面で次の不等式で表される領域を図示せよ.
\[ |x| \leqq y \leqq 1-|x| \]
鹿児島大学 国立 鹿児島大学 2016年 第4問
四面体$\mathrm{OABC}$を考える.辺$\mathrm{OA}$を$1:1$に内分する点を$\mathrm{P}$とする.また辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{Q}$として,辺$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{R}$とする.さらに三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面と線分$\mathrm{OG}$の交点を$\mathrm{K}$とする.線分$\mathrm{OK}$と$\mathrm{KG}$の長さの比を求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第1問
次の各問いに答えよ.

(1)$\triangle \mathrm{ABC}$において$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\mathrm{AB}=6$,$\mathrm{BC}=5$,$\mathrm{BD}=3$のとき,辺$\mathrm{AC}$の長さを求めよ.
(2)自然数$n$が$6$と互いに素であるとき,$n^2-1$が$6$で割り切れることを示せ.
(3)$xy$平面で次の不等式で表される領域を図示せよ.
\[ |x| \leqq y \leqq 1-|x| \]
鹿児島大学 国立 鹿児島大学 2016年 第4問
四面体$\mathrm{OABC}$を考える.辺$\mathrm{OA}$を$1:1$に内分する点を$\mathrm{P}$とする.また辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{Q}$として,辺$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{R}$とする.さらに三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面と線分$\mathrm{OG}$の交点を$\mathrm{K}$とする.線分$\mathrm{OK}$と$\mathrm{KG}$の長さの比を求めよ.
九州工業大学 国立 九州工業大学 2016年 第1問
四面体$\mathrm{OABC}$の面はすべて合同であり,$\mathrm{OA}=5$,$\mathrm{OB}=8$,$\mathrm{AB}=7$である.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$および$\overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$の定める平面を$\alpha$とし,$\alpha$上の点$\mathrm{H}$を直線$\mathrm{CH}$と$\alpha$が垂直になるように選ぶ.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$(2)$の点$\mathrm{H}$に対して,線分$\mathrm{CH}$の長さを求めよ.
(4)四面体$\mathrm{OABC}$の体積$V_1$を求めよ.また,辺$\mathrm{OC}$の中点を$\mathrm{D}$とし,さらに辺$\mathrm{OB}$上に点$\mathrm{E}$を$\mathrm{AE}+\mathrm{ED}$が最小となるようにとる.このとき,四面体$\mathrm{OAED}$の体積$V_2$を求めよ.
長崎大学 国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$のように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)

(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
長崎大学 国立 長崎大学 2016年 第2問
空間において,$3$点$\mathrm{A}(5,\ 0,\ 1)$,$\mathrm{B}(4,\ 2,\ 0)$,$\mathrm{C}(0,\ 1,\ 5)$を頂点とする三角形$\mathrm{ABC}$がある.以下の問いに答えよ.

(1)線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めよ.
(2)三角形$\mathrm{ABC}$の面積$S$を求めよ.
(3)原点$\mathrm{O}(0,\ 0,\ 0)$から平面$\mathrm{ABC}$に垂線を下し,平面$\mathrm{ABC}$との交点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{AH}}=\ell \overrightarrow{\mathrm{AB}}+m \overrightarrow{\mathrm{AC}}$とおくとき,実数$\ell,\ m$の値を求めよ.
(4) 直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{M}$とする.$\overrightarrow{\mathrm{AH}}=k \overrightarrow{\mathrm{AM}}$とおくとき,実数$k$の値と三角形$\mathrm{HBC}$の面積$T$を求めよ.
(5)原点$\mathrm{O}$を頂点,四角形$\mathrm{ABHC}$を底面とする四角錐$\mathrm{O}$-$\mathrm{ABHC}$の体積$V$を求めよ.
長崎大学 国立 長崎大学 2016年 第4問
楕円$\displaystyle x^2+\frac{y^2}{a^2}=1 (a>0)$と$y$軸の交点を$\mathrm{A}(0,\ a)$,$\mathrm{B}(0,\ -a)$とする.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,点$\mathrm{P}(\cos \theta,\ a \sin \theta)$はこの楕円上を動く.以下の問いに答えよ.

(1)線分$\mathrm{AP}$の長さを$l$とする.$\displaystyle X=\sin \theta \left( -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2} \right)$のとき,$Y=l^2$となる関数を$Y=f(X)$とする.$f(X)$を$X$の式で表せ.
(2)$0<a<1$の場合.
$(1)$の関数$f(X)$の最大値を$a$を用いて表し,そのときの$X$の値を求めよ.
(3)$a=2$の場合.
$(1)$の関数$f(X)$の値が最大となるときの点$\mathrm{P}$を$\mathrm{P}_1$とする.$f(X)$の最大値と$\mathrm{P}_1$の座標を求めよ.また,点$\mathrm{A}(0,\ 2)$を中心とし点$\mathrm{P}_1$を通る円を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。