タグ「証明」の検索結果

30ページ目:全1924問中291問~300問を表示)
東京工業大学 国立 東京工業大学 2015年 第1問
数列$\{a_n\}$を
\[ a_1=5,\quad a_{n+1}=\frac{4a_n-9}{a_n-2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.また数列$\{b_n\}$を
\[ b_n=\frac{a_1+2a_2+\cdots +na_n}{1+2+\cdots +n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定める.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)すべての$n$に対して,不等式$\displaystyle b_n \leqq 3+\frac{4}{n+1}$が成り立つことを示せ.
(3)極限値$\displaystyle \lim_{n \to \infty} b_n$を求めよ.
東京工業大学 国立 東京工業大学 2015年 第3問
$a>0$とする.曲線$y=e^{-x^2}$と$x$軸,$y$軸,および直線$x=a$で囲まれた図形を,$y$軸のまわりに$1$回転してできる回転体を$A$とする.

(1)$A$の体積$V$を求めよ.
(2)点$(t,\ 0) (-a \leqq t \leqq a)$を通り$x$軸と垂直な平面による$A$の切り口の面積を$S(t)$とするとき,不等式
\[ S(t) \leqq \int_{-a}^a e^{-(s^2+t^2)} \, ds \]
を示せ.
(3)不等式
\[ \sqrt{\pi (1-e^{-a^2})} \leqq \int_{-a}^a e^{-x^2} \, dx \]
を示せ.
東京工業大学 国立 東京工業大学 2015年 第4問
$xy$平面上を運動する点$\mathrm{P}$の時刻$t (t>0)$における座標$(x,\ y)$が
\[ x=t^2 \cos t,\quad y=t^2 \sin t \]
で表されている.原点を$\mathrm{O}$とし,時刻$t$における$\mathrm{P}$の速度ベクトルを$\overrightarrow{v}$とする.

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\theta (t)$とするとき,極限値$\displaystyle \lim_{t \to \infty} \theta (t)$を求めよ.
(2)$\overrightarrow{v}$が$y$軸に平行になるような$t (t>0)$のうち,最も小さいものを$t_1$,次に小さいものを$t_2$とする.このとき,不等式$t_2-t_1<\pi$を示せ.
東京工業大学 国立 東京工業大学 2015年 第5問
$n$を相異なる素数$p_1,\ p_2,\ \cdots,\ p_k (k \geqq 1)$の積とする.$a,\ b$を$n$の約数とするとき,$a,\ b$の最大公約数を$G$,最小公倍数を$L$とし,
\[ f(a,\ b)=\frac{L}{G} \]
とする.

(1)$f(a,\ b)$が$n$の約数であることを示せ.
(2)$f(a,\ b)=b$ならば,$a=1$であることを示せ.
(3)$m$を自然数とするとき,$m$の約数であるような素数の個数を$S(m)$とする.$S(f(a,\ b))+S(a)+S(b)$が偶数であることを示せ.
埼玉大学 国立 埼玉大学 2015年 第1問
$c$は正の整数とする.数列$a_1,\ a_2,\ a_3,\ \cdots$は$a_1=1$,$a_2=c$であり,さらに漸化式
\[ a_{n+2}=a_{n+1}+a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$n=1,\ 2,\ 3,\ \cdots$に対して,$a_n$は正の整数であり,かつ,$a_n$と$a_{n+1}$の最大公約数は$1$であることを示せ.
(2)${(-1)}^n(a_{n+1}^2-a_{n+2}a_n)$は$n$によらず一定の値であることを示せ.
(3)$c \geqq 2$とし,$\displaystyle b_n=\frac{a_{n+1}}{a_n}$とおくと
\[ \left\{ \begin{array}{ll}
b_{n+1}>b_n & (n \text{が偶数のとき}) \\
b_{n+1}<b_n & (n \text{が奇数のとき})
\end{array} \right. \]
が成り立つことを示せ.
埼玉大学 国立 埼玉大学 2015年 第1問
$c$は実数とする.数列$a_1,\ a_2,\ a_3,\ \cdots$は$a_1=1$,$a_2=c$であり,さらに漸化式
\[ a_{n+2}=a_{n+1}+a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$a_3={a_2}^2$が成り立つような$c$の値を求めよ.
(2)$c$が$(1)$で求めた値のとき,数列$a_1,\ a_2,\ a_3,\ \cdots$が等比数列であることを数学的帰納法を用いて示せ.
(3)$(1)$で求めた$c$の値のうち,$\displaystyle \lim_{n \to \infty}a_n=0$となるものを求めよ.
(4)$c$が$(3)$で求めた値のとき,$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
熊本大学 国立 熊本大学 2015年 第2問
$p,\ q,\ r$を実数とする.空間内の$3$点$\mathrm{A}(1,\ p,\ 0)$,$\mathrm{B}(q,\ 1,\ 1)$,$\mathrm{C}(-1,\ -1,\ r)$が一直線上にあるとき,以下の問いに答えよ.ただし,$\mathrm{O}$を原点とする.

(1)$p$は$1$でも$-1$でもないことを示せ.
(2)$q,\ r$を$p$を用いて表せ.
(3)$p^\prime,\ q^\prime,\ r^\prime$を実数とし,空間内の$3$点を$\mathrm{A}^\prime(1,\ p^\prime,\ 0)$,$\mathrm{B}^\prime(q^\prime,\ 1,\ 1)$,$\mathrm{C}^\prime(-1,\ -1,\ r^\prime)$とする.ベクトル$\overrightarrow{\mathrm{OA}^\prime}$,$\overrightarrow{\mathrm{OB}^\prime}$,$\overrightarrow{\mathrm{OC}^\prime}$がいずれもベクトル$\overrightarrow{\mathrm{AB}}$に垂直であるとき,$p^\prime,\ q^\prime,\ r^\prime$を$p$を用いて表せ.
(4)$(3)$における$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$は一直線上にないことを示せ.
熊本大学 国立 熊本大学 2015年 第2問
座標空間内の$3$点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(3,\ 0,\ 1)$,$\mathrm{C}(1,\ 2,\ 0)$を含む平面を$H$とする.以下の問いに答えよ.

(1)点$\mathrm{P}(-3,\ 2,\ 2)$は$H$上の点であることを示せ.
(2)点$\mathrm{Q}(1,\ -3,\ -4)$を通る直線が$H$と直交するとき,その交点の座標を求めよ.
熊本大学 国立 熊本大学 2015年 第2問
$p,\ q,\ r$を実数とする.空間内の$3$点$\mathrm{A}(1,\ p,\ 0)$,$\mathrm{B}(q,\ 1,\ 1)$,$\mathrm{C}(-1,\ -1,\ r)$が一直線上にあるとき,以下の問いに答えよ.ただし,$\mathrm{O}$を原点とする.

(1)$p$は$1$でも$-1$でもないことを示せ.
(2)$q,\ r$を$p$を用いて表せ.
(3)$p^\prime,\ q^\prime,\ r^\prime$を実数とし,空間内の$3$点を$\mathrm{A}^\prime(1,\ p^\prime,\ 0)$,$\mathrm{B}^\prime(q^\prime,\ 1,\ 1)$,$\mathrm{C}^\prime(-1,\ -1,\ r^\prime)$とする.ベクトル$\overrightarrow{\mathrm{OA}^\prime}$,$\overrightarrow{\mathrm{OB}^\prime}$,$\overrightarrow{\mathrm{OC}^\prime}$がいずれもベクトル$\overrightarrow{\mathrm{AB}}$に垂直であるとき,$p^\prime,\ q^\prime,\ r^\prime$を$p$を用いて表せ.
(4)$(3)$における$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$は一直線上にないことを示せ.
香川大学 国立 香川大学 2015年 第1問
図のような一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とする.$\mathrm{M}$を辺$\mathrm{OC}$の中点,$\mathrm{R}$,$\mathrm{S}$をそれぞれ辺$\mathrm{AE}$,辺$\mathrm{GF}$上の点とする.$\mathrm{AR}=r$,$\mathrm{GS}=s$,$\angle \mathrm{RMS}=\theta$とおくとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{MR}}$,$\overrightarrow{\mathrm{MS}}$を,それぞれ$r,\ s,\ \overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(2)$\cos \theta$を$r,\ s$を用いて表せ.
(3)$\triangle \mathrm{MRS}$が$\angle \mathrm{RMS}={90}^\circ$の直角二等辺三角形のとき,$r$と$s$の値を求めよ.
(4)$\angle \mathrm{MRS}$はつねに鋭角であることを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。