タグ「証明」の検索結果

23ページ目:全1924問中221問~230問を表示)
大阪市立大学 公立 大阪市立大学 2016年 第4問
$n$を正の整数とし,$m$を$0$以上$10$以下の整数とする.袋$1$から袋$n$まで,外見では区別のつかない袋が$n$袋ある.$k=1,\ 2,\ \cdots,\ n$について,袋$k$の中には,赤球が$k$個,白球が$n-k$個入っているものとする.袋を$1$つ選んだ後,その選んだ袋について次の操作を$10$回繰り返して行うことにする.

(操作) 袋から球を$1$つ取り出し,色を確認してその袋に戻す.

赤球をちょうど$m$回取り出す確率を$P_{m,n}$とするとき,次の問いに答えよ.

(1)$P_{m,n}$を求めよ.
(2)$\displaystyle \lim_{n \to \infty} P_{10,n}$を求めよ.
(3)$m=0,\ 1,\ 2,\ \cdots,\ 9$について,$\displaystyle \lim_{n \to \infty}P_{m,n}=\lim_{n \to \infty} P_{m+1,n}$を示せ.
首都大学東京 公立 首都大学東京 2016年 第1問
以下の問いに答えなさい.

(1)次の式を展開しなさい.
\[ (x+y+z)(x^2+y^2+z^2-xy-yz-zx) \]
(2)$a,\ b,\ c$を$0$以上の実数とする.次の不等式が成り立つことを示しなさい.また,等号が成り立つのはどのようなときか答えなさい.
\[ \frac{a+b+c}{3} \geqq \sqrt[3]{abc} \]
首都大学東京 公立 首都大学東京 2016年 第2問
数直線上に$2$点$\mathrm{Q}(-1)$と$\displaystyle \mathrm{P}_1 \left( \frac{1}{2} \right)$をとり,線分$\mathrm{QP}_1$を$3:1$に外分する点を$\mathrm{P}_2$,線分$\mathrm{QP}_2$を$3:1$に外分する点を$\mathrm{P}_3$とする.以下同様に$n=1,\ 2,\ \cdots$に対し線分$\mathrm{QP}_n$を$3:1$に外分する点を$\mathrm{P}_{n+1}$とする.また$\mathrm{P}_n$の座標を$a_n$とする.このとき,以下の問いに答えなさい.

(1)$\mathrm{A}$を数直線上の$\mathrm{Q}$と異なる点とする.線分$\mathrm{QA}$を$3:1$に外分する点が$\mathrm{P}_1$であるとき,$\mathrm{A}$の座標$a$を求めなさい.
(2)すべての自然数$n$に対して
\[ a_n=\left( \frac{3}{2} \right)^n-1 \]
が成り立つことを$n$に関する数学的帰納法で証明しなさい.
(3)$999<a_n<9999$をみたす自然数$n$をすべて求めなさい.ただし,本問では$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
愛知県立大学 公立 愛知県立大学 2016年 第2問
原点を$\mathrm{O}$とする座標平面上に,異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$がある.それぞれの位置ベクトルを$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{p}$とし,$\overrightarrow{p}=s \overrightarrow{a}+t \overrightarrow{b}$および$2s+t=2$を満たすとする.ただし,$s>0$,$t>0$とする.また$\overrightarrow{a}$と$\overrightarrow{b}$がなす角度を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{C}$の位置ベクトル$\overrightarrow{c}$が$\overrightarrow{c}=2 \overrightarrow{b}$を満たすとき,点$\mathrm{P}$は直線$\mathrm{AC}$上にあることを示せ.
(2)点$\mathrm{P}$を中心とする円が直線$\mathrm{OA}$,$\mathrm{OB}$に接しているとする.$|\overrightarrow{a|}=3$,$|\overrightarrow{b|}=1$とするとき,$s$と$t$を求めよ.
(3)$(2)$のとき,直線$\mathrm{OA}$に関して,点$\mathrm{P}$と対称な点$\mathrm{Q}$の位置ベクトルを$\overrightarrow{a}$,$\overrightarrow{b}$,$\theta$で表せ.
大阪府立大学 公立 大阪府立大学 2016年 第3問
以下の問いに答えよ.

(1)次の等式が成り立つことを示せ.
\[ \cos (\alpha+\beta) \sin \alpha-\cos \alpha \sin (\alpha-\beta)=\cos 2\alpha \sin \beta \]
(2)$k,\ n$を自然数とし,$\theta$は$\sin \theta \neq 0$を満たすとする.$(1)$の等式で$\alpha=k \theta$,$\beta=\theta$とおくことにより次の等式が成り立つことを示せ.
\[ \sum_{k=1}^n \cos 2k \theta=\frac{\cos (n+1) \theta \sin n \theta}{\sin \theta} \]
(3)$\displaystyle \sum_{k=1}^{100} \cos^2 \frac{k \pi}{100}$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2016年 第2問
\begin{mawarikomi}{50mm}{(図は省略)}
右図のような$1$辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$\displaystyle 0<t<\frac{1}{2}$となる$t$に対して,辺$\mathrm{AE}$を$t:1-t$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$を$2t:1-2t$に内分する点を$\mathrm{Q}$とする.$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$の定める平面を$\alpha$とし,平面$\alpha$と直線$\mathrm{BF}$との交点を$\mathrm{R}$とすると,四角形$\mathrm{OPRQ}$は平行四辺形である.平行四辺形$\mathrm{OPRQ}$の面積を$S$,四角錐$\mathrm{DOPRQ}$の体積を$V$とする.このとき,以下の問いに答えよ.
\end{mawarikomi}

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$S$を$t$を用いて表せ.
(3)平面$\alpha$に点$\mathrm{D}$から垂線$\mathrm{DH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$と$t$を用いて表せ.
(4)$V$は$t$によらず一定であることを示せ.
大阪府立大学 公立 大阪府立大学 2016年 第4問
正の実数$a$に対して,$y=ax^2$のグラフを$C_1$,$\displaystyle y=\frac{a^2-1}{a}x^2+\frac{2}{a}x-\frac{1}{a}$のグラフを$C_2$とする.このとき,以下の問いに答えよ.

(1)$C_1$と$C_2$の共有点は点$(1,\ a)$のみであることを示せ.
(2)$C_2$と$x$軸の$0<x<1$の部分との交点は,点$\displaystyle \left( \frac{1}{a+1},\ 0 \right)$のみであることを示せ.
(3)$C_1$の$0 \leqq x \leqq 1$の部分,$C_2$の$\displaystyle \frac{1}{a+1} \leqq x \leqq 1$の部分,および$x$軸の$\displaystyle 0 \leqq x \leqq \frac{1}{a+1}$の部分とで囲まれる図形の面積を$S$とする.$S$を$a$を用いて表せ.
(4)$a$がすべての正の実数を動くとき,$(3)$で求めた面積$S$の最大値を求めよ.
大阪府立大学 公立 大阪府立大学 2016年 第2問
\begin{mawarikomi}{50mm}{(図は省略)}
右図のような$1$辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$\displaystyle 0<t<\frac{1}{2}$となる$t$に対して,辺$\mathrm{AE}$を$t:1-t$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$を$2t:1-2t$に内分する点を$\mathrm{Q}$とする.$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$の定める平面を$\alpha$とし,平面$\alpha$と直線$\mathrm{BF}$との交点を$\mathrm{R}$とすると,四角形$\mathrm{OPRQ}$は平行四辺形である.平行四辺形$\mathrm{OPRQ}$の面積を$S$,四角錐$\mathrm{DOPRQ}$の体積を$V$とする.このとき,以下の問いに答えよ.
\end{mawarikomi}

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$S$を$t$を用いて表せ.
(3)平面$\alpha$に点$\mathrm{D}$から垂線$\mathrm{DH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$と$t$を用いて表せ.
(4)$V$は$t$によらず一定であることを示せ.
首都大学東京 公立 首都大学東京 2016年 第2問
$n$を自然数とし,
\[ h(x)=x-n \log x \]
とおく.ただし,$\log x$は自然対数とする.以下の問いに答えなさい.

(1)$x \geqq 2n$のとき,$\displaystyle h^\prime(x) \geqq \frac{1}{2}$が成り立つことを示しなさい.ただし,$h^\prime(x)$は$h(x)$の導関数とする.
(2)$x \geqq 2n$のとき,$\displaystyle h(x)-h(2n) \geqq \frac{1}{2}(x-2n)$が成り立つことを示しなさい.
(3)$x \geqq 2n$かつ$x \geqq 2n-2h(2n)$のとき,$h(x) \geqq 0$が成り立つことを示しなさい.
(4)$(3)$を利用して$\displaystyle \lim_{x \to \infty} \frac{x^{n-1}}{e^x}=0$が成り立つことを示しなさい.ただし,$e$は自然対数の底とする.
首都大学東京 公立 首都大学東京 2016年 第3問
$p,\ q,\ r$を整数とし,数列
\[ a_n=pn^3+qn^2+rn \quad (n=1,\ 2,\ 3,\ \cdots) \]
を考える.以下の問いに答えなさい.

(1)$p+r=q=0$のとき,すべての自然数$n$に対し$a_n$は$6$の倍数であることを示しなさい.
(2)$q$が$3$の倍数でないとき,$a_2-2a_1$は$6$の倍数ではないことを示しなさい.
(3)$a_1$と$a_2$がともに$6$の倍数であれば,すべての自然数$n$に対し$a_n$は$6$の倍数であることを示しなさい.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。