タグ「証明」の検索結果

14ページ目:全1924問中131問~140問を表示)
鹿児島大学 国立 鹿児島大学 2016年 第2問
次の各問いに答えよ.

(1)整式$P(x)$を$0$でない整式$Q(x)$で割った余りを$R(x)$とおく.方程式$P(x)=0$と$Q(x)=0$の共通解は方程式$Q(x)=0$と$R(x)=0$の共通解であることを示せ.また逆に方程式$Q(x)=0$と$R(x)=0$の共通解は方程式$P(x)=0$と$Q(x)=0$の共通解であることを示せ.
(2)整式$P(x),\ Q(x)$を
\[ P(x)=x^4+2x^3+x^2-1,\quad Q(x)=x^3+2x^2-1 \]
とおく.方程式$P(x)=0$と$Q(x)=0$の共通解をすべて求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第3問
数列$\{a_n\}$を$a_1=a_2=1$,$a_{n+2}=a_{n+1}+a_n (n=1,\ 2,\ 3,\ \cdots)$によって定める.また$\alpha$を$\displaystyle \alpha=1+\frac{1}{\alpha}$を満たす正の実数とする.次の各問いに答えよ.

(1)数列$\{b_n\}$を$\displaystyle b_n=\frac{a_{n+1}}{a_n}$で定める.$b_{n+1}$を$b_n$を用いて表せ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して$b_n \geqq 1$となることを示せ.
(3)$n=1,\ 2,\ 3,\ \cdots$に対して$\displaystyle |b_{n+1|-\alpha} \leqq \frac{1}{\alpha} |b_n-\alpha|$となることを示せ.
(4)$n=1,\ 2,\ 3,\ \cdots$に対して$\displaystyle |b_n-\alpha| \leqq \frac{1}{\alpha^n}$となることを示せ.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
九州工業大学 国立 九州工業大学 2016年 第2問
$s>0$,$t>0$とする.正の数からなる$2$つの数列$\{a_n\}$,$\{b_n\}$は初項と第$2$項が$a_1=b_1=s$,$a_2=b_2=t$であり,すべての自然数$n$に対して
\[ a_{n+2}=\frac{a_{n+1}+a_n}{2},\quad b_{n+2}=\sqrt{b_{n+1}b_n} \]
をみたすとする.次に答えよ.

(1)$a_3,\ b_3,\ a_4,\ b_4$を$s,\ t$を用いて表せ.
(2)自然数$n$に対して,$c_n=a_{n+1}-a_n$とおく.数列$\{c_n\}$は等比数列であることを示し,一般項を求めよ.さらに,数列$\{a_n\}$の一般項を求めよ.
(3)自然数$n$に対して,$d_n=\log b_n$とおく.数列$\{d_n\}$の一般項を求めよ.さらに,数列$\{b_n\}$の一般項を$s$の累乗と$t$の累乗を用いて表せ.ただし,対数は自然対数とする.
(4)$\displaystyle \lim_{n \to \infty}a_n$と$\displaystyle \lim_{n \to \infty}b_n$を求めよ.
(5)$t=s$は$\displaystyle \lim_{n \to \infty}a_n=\lim_{n \to \infty}b_n$であるための必要十分条件であることを示せ.
九州工業大学 国立 九州工業大学 2016年 第4問
点$\mathrm{A}(1,\ 0)$および点$\displaystyle \mathrm{P}(\sqrt{3} \cos \theta,\ \sqrt{3} \sin \theta) \left( 0<\theta<\frac{\pi}{4} \right)$がある.$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とし,$2$点$\mathrm{P}$,$\mathrm{A}$を通る直線を$\ell$,$2$点$\mathrm{O}$,$\mathrm{Q}$を通る直線を$m$とする.次に答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)$\sqrt{3} \cos \theta>1$を示せ.
(2)直線$\ell$の方程式と直線$m$の方程式を$\theta$を用いて表せ.
(3)直線$\ell$と直線$m$の交点$\mathrm{R}$の座標を$\theta$を用いて表せ.
(4)三角形$\mathrm{PAQ}$の面積を$S$とする.$\theta$が変化するとき,$S$の最大値とそのときの$\theta$の値を求めよ.
(5)$\theta$が$(4)$で求めた値をとるとき,$2$直線$\ell,\ m$および曲線$x^2+y^2=3 (x \geqq \sqrt{3} \cos \theta)$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$のように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)

(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
鹿児島大学 国立 鹿児島大学 2016年 第7問
次の各問いに答えよ.

(1)複素数$z,\ w$について,次の関係が成立することを示せ.ただし複素数$\alpha$に対し,$\overline{\alpha}$は$\alpha$と共役な複素数を表す.

(i) $\overline{z+w}=\overline{z}+\overline{w}$
(ii) $\overline{zw}=\overline{z} \ \overline{w}$

(2)方程式$z^2-z+1=0$の$2$つの解を$\alpha,\ \beta$とする.次の各問いに答えよ.

(i) $\alpha,\ \beta$を求めよ.さらにそれらを極形式で表せ.
(ii) $\alpha^{100}+\beta^{100}$を求めよ.
奈良女子大学 国立 奈良女子大学 2016年 第3問
$6$つの整数$a,\ b,\ c,\ d,\ e,\ f$はすべて$0$以上で,次の$3$条件(ア),(イ),(ウ)をみたすとする.

(ア)\ $a>b>c>d$
(イ)\ $a=be+c$
(ウ)\ $b=cf+d$

次の問いに答えよ.

(1)$a=8$のとき,$5$つの整数$b,\ c,\ d,\ e,\ f$の組をすべて求めよ.

(2)$\displaystyle c<\frac{a}{2}$が成り立つことを示せ.

(3)$\displaystyle d<\frac{a}{3}$が成り立つことを示せ.
宮崎大学 国立 宮崎大学 2016年 第4問
$r>0$とするとき,関数$f_n(x) (n=1,\ 2,\ 3,\ \cdots)$を

$f_1(x)=e^{-rx},$

$\displaystyle f_{n+1}(x)=nre^{-(n+1)rx} \int_0^x f_n(t) e^{(n+1)rt} \, dt \quad (n=1,\ 2,\ 3,\ \cdots)$

によって定める.このとき,次の各問に答えよ.

(1)関数$f_2(x),\ f_3(x)$を求めよ.
(2)関数$f_n(x)$を推測し,その推測が正しいことを,数学的帰納法を用いて証明せよ.
(3)$n \geqq 3,\ x>0$のとき,関数$f_n(x)$の極値を求めよ.
島根大学 国立 島根大学 2016年 第2問
座標空間に原点$\mathrm{O}$と点$\mathrm{A}(2 \sqrt{3},\ 0,\ 2)$,$\mathrm{B}(\sqrt{3},\ 2 \sqrt{3},\ 1)$がある.次の問いに答えよ.

(1)三角形$\mathrm{OAB}$は正三角形であることを示せ.
(2)四面体$\mathrm{OABC}$が正四面体となるような点$\mathrm{C}$の座標を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。