タグ「証明」の検索結果

132ページ目:全1924問中1311問~1320問を表示)
京都教育大学 国立 京都教育大学 2012年 第3問
自然数$6$は$6=1+2+3$と$2$つ以上の連続する自然数の和として表すことができる.同様に,$15$は$15=4+5+6$と表すことができる.ただし,このような表し方は$1$通りとは限らない.実際,$15$は$15=1+2+3+4+5$とも表すことができる.次の問に答えよ.

(1)$3$つの連続する自然数の和として表すことができる数を,小さいものから順に$5$個書け.
(2)$4$つの連続する自然数の和として表すことができる数を,小さいものから順に$5$個書け.
(3)$5$つの連続する自然数の和として表すことができる数を,小さいものから順に$5$個書け.
(4)自然数$1024$は,$2$つ以上の連続する自然数の和として表すことができないことを証明せよ.
京都教育大学 国立 京都教育大学 2012年 第5問
関数$f(x)=x^2-2$に対して,$y=f(x)$のグラフ上の点$(a,\ f(a))$における接線と$x$軸との交点の$x$座標を$g(a)$とおく.ただし,$a>0$とする.また$x_1=4$とし,$n=1,\ 2,\ 3,\ \cdots$に対して$x_{n+1}=g(x_n)$とおく.次の問に答えよ.

(1)$y=f(x)$のグラフ上の点$(4,\ 14)$におけるグラフの接線の方程式を求めよ.
(2)どのような自然数$n$に対しても$x_n>0$であることを数学的帰納法によって証明せよ.
(3)$x_3$を求めよ.
(4)どのような自然数$n$に対しても$x_{n+1} \geqq \sqrt{2}$であることを,相加平均と相乗平均の大小関係を使って証明せよ.
京都教育大学 国立 京都教育大学 2012年 第6問
$2$つの関数
\[ f(x)=x^3+1,\quad g(x)=f(1)+f^\prime(1)(x-1)+\frac{1}{2}f^{\prime\prime}(1)(x-1)^2 \]
について,次の問に答えよ.

(1)導関数の定義に従って$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$g(x)$を求めよ.
(3)$0 \leqq x \leqq 1$において常に$f(x) \leqq g(x)$であることを証明せよ.
(4)$2$つの曲線$y=f(x)$,$y=g(x)$と$y$軸で囲まれる図形の面積を求めよ.
鳥取大学 国立 鳥取大学 2012年 第2問
$a,\ b,\ c$を正の整数とするとき,等式
\[ \left( 1+\frac{1}{a} \right) \left( 1+\frac{1}{b} \right) \left( 1+\frac{1}{c} \right)=2 \cdots (*) \]
について次の問いに答えよ.

(1)$c=1$のとき,等式$(*)$を満たす正の整数$a,\ b$は存在しないことを示せ.
(2)$c=2$のとき,等式$(*)$を満たす正の整数$a$と$b$の組で$a \geqq b$を満たすものをすべて求めよ.
(3)等式$(*)$を満たす正の整数の組$(a,\ b,\ c)$で$a \geqq b \geqq c$を満たすものをすべて求めよ.
愛媛大学 国立 愛媛大学 2012年 第2問
次の問いに答えよ.

(1)$a,\ b$を実数で,$a \neq 0$とする.$\displaystyle c=\frac{2+3ai}{a-bi}$が純虚数のとき,$b$と$c$の値を求めよ.
(2)定積分$\displaystyle \int_0^{2\pi} |x \cos \displaystyle\frac{x|{3}} \, dx$を求めよ.
(3)直方体の各面にさいころのように$1$から$6$までの目が書かれている.この直方体を投げて,$1,\ 6$の目が出る確率はともに$p$であり,$2,\ 3,\ 4,\ 5$の目が出る確率はいずれも$q$である.この直方体を$1$回投げて,出た目の数を得点とする.このとき,得点の期待値は$p,\ q$の値によらずに一定であることを示せ.
(4)座標平面上の曲線
\[ x=2 \cos \theta+1,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
で囲まれた図形を$x$軸の回りに$1$回転して得られる回転体の体積を求めよ.
茨城大学 国立 茨城大学 2012年 第2問
実数$x,\ y$に対して,$x * y$を$x * y=x+y+xy$により定義する.次の各問に答えよ.

(1)実数$p,\ q,\ r$に対して$p * (q * r)-(p * q) * r$を求めよ.
(2)$a_1=2$,$a_{n+1}=a_n * 2 (n=1,\ 2,\ 3,\ \cdots)$で定められた数列$\{a_n\}$の一般項$a_n$は$a_n=3^n-1$となることを数学的帰納法を用いて証明せよ.
(3)実数$p$に対して$b_1=p$,$b_{n+1}=b_n * 2 (n=1,\ 2,\ 3,\ \cdots)$で定められた数列$\{b_n\}$の一般項$b_n$を求めよ.
早稲田大学 私立 早稲田大学 2012年 第1問
以下の問に答えよ.

(1)複素数$\alpha, \beta$に対して$\alpha\beta=0$ならば,$\alpha=0$または$\beta=0$であることを示せ.
(2)複素数$\alpha$に対して$\alpha^2$が正の実数ならば,$\alpha$は実数であることを示せ.
(3)複素数$\alpha_1,\alpha_2,\cdots,\alpha_{2n+1}$($n$は自然数)に対して,$\alpha_1\alpha_2,\cdots,\alpha_k\alpha_{k+1},\cdots,\alpha_{2n}\alpha_{2n+1}$および$\alpha_{2n+1}\alpha_1$がすべて正の実数であるとする.このとき,$\alpha_1,\alpha_2,\cdots,\alpha_{2n+1}$はすべて実数であることを示せ.
早稲田大学 私立 早稲田大学 2012年 第3問
表が出る確率が$a \ (0<a<\displaystyle\frac{1}{2})$,裏が出る確率が$1-a$のコインを1枚投げる試行を$n$回行う.ただし$n \geqq 2$とする.この$n$回の試行の結果,表が$2$回以上出る事象を$A_n$で表す.また$1$回目から$n$回目の試行が終わるまでに,[裏→表]の順で出ない事象を$B_n$で表す.つぎの問に答えよ.

(1)確率$P(A_n),\ P(B_n)$を求めよ.
(2)確率$P(A_n \cap B_n)$を求めよ.
(3)極限
\[ \lim_{n \to \infty} \frac{P(A_n)P(B_n)}{P(A_n \cap B_n)} \]
を求めよ.ただし,$0<r<1$をみたす$r$に対して,$\displaystyle\lim_{n \to \infty} nr^n = 0$となることを証明なしに用いてよい.
早稲田大学 私立 早稲田大学 2012年 第3問
実数係数の$x$の多項式で表された関数$f(x)$は,導関数$f^{\prime}(x)$がすべての実数$x$に対して
$f^\prime (x)>0$をみたし,かつ,$f^\prime (x)$は極大値をもつとする.実数$s$に対して,点$(s,\ f(s))$における曲線$y=f(x)$の接線と$x$軸との交点の$x$座標を$s$の関数として$g(s)$と表す.

(1)導関数$g^\prime(s)$を求めよ.
(2)関数$g(s)$は極大値と極小値をもつことを示せ.
明治大学 私立 明治大学 2012年 第3問
円に内接する$4$角形$\mathrm{ABCD}$について,$\mathrm{AB}=a$,$\mathrm{BC}=b$,$\mathrm{CD}=c$,$\mathrm{AD}=d$とおくとき,次の問に答えよ.

(1)$a^2+b^2=c^2+d^2$であるための必要十分条件が,$\angle \mathrm{B} = \angle \mathrm{D}$である事を証明せよ.
(2)$\displaystyle a=\frac{\sqrt{2}}{3},\ b=\frac{\sqrt{7}}{3},\ c=\frac{\sqrt{5}}{3},\ d=\frac{2}{3}$とするとき,$\cos (\angle \mathrm{A} - \angle \mathrm{C})$を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。