タグ「計算」の検索結果

1ページ目:全152問中1問~10問を表示)
東京工業大学 国立 東京工業大学 2016年 第5問
次のように媒介変数表示された$xy$平面上の曲線を$C$とする:
\[ \left\{ \begin{array}{l}
x=3 \cos t-\cos 3t \phantom{\frac{8}{8}} \\
y=3 \sin t-\sin3 t \phantom{\frac{[ ]}{8}}
\end{array} \right. \]
ただし$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$である.

(1)$\displaystyle \frac{dx}{dt}$および$\displaystyle \frac{dy}{dt}$を計算し,$C$の概形を図示せよ.
(2)$C$と$x$軸と$y$軸で囲まれた部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第2問
関数$y=f(x)$のグラフが媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=\sin \theta-\theta \cos \theta \phantom{\frac{1}{[ ]}} \\
y=\cos \theta+\theta \sin \theta \phantom{\frac{1}{1}}
\end{array} \right. \quad (0 \leqq \theta \leqq \pi) \]
と表されている.

(1)関数$y=f(x)$の極値を求めよ.

(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \theta \sin 2\theta \, d\theta$および$\displaystyle \int_0^{\frac{\pi}{2}} \theta^2 \cos 2\theta \, d\theta$を計算せよ.

(3)関数$y=f(x)$のグラフと$x$軸,および$2$直線$x=0$と$x=1$で囲まれた図形の面積$S$を求めよ.
一橋大学 国立 一橋大学 2016年 第5問
次の$\tocichi$,$\tocni$のいずれか一方を選択して解答せよ.

\mon[$\tocichi$] 平面上の$2$つのベクトル$\overrightarrow{a}$と$\overrightarrow{b}$は零ベクトルではなく,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角度は${60}^\circ$である.このとき
\[ r=\frac{|\overrightarrow{a}+2 \overrightarrow{b}|}{|2 \overrightarrow{a}+\overrightarrow{b}|} \]
のとりうる値の範囲を求めよ.
\mon[$\tocni$] $x$は$0$以上の整数である.次の表は$2$つの科目$\mathrm{X}$と$\mathrm{Y}$の試験を受けた$5$人の得点をまとめたものである.

\begin{tabular}{|l||c|c|c|c|c|}
\hline
& $①$ & $②$ & $③$ & $④$ & $⑤$ \\ \hline
科目$\mathrm{X}$の得点 & $x$ & $6$ & $4$ & $7$ & $4$ \\ \hline
科目$\mathrm{Y}$の得点 & $9$ & $7$ & $5$ & $10$ & $9$ \\ \hline
\end{tabular}


(i) $2n$個の実数$a_1,\ a_2,\ \cdots,\ a_n,\ b_1,\ b_2,\ \cdots,\ b_n$について,$\displaystyle a=\frac{1}{n} \sum_{k=1}^n a_k$,$\displaystyle b=\frac{1}{n} \sum_{k=1}^n b_k$とすると,
\[ \sum_{k=1}^n (a_k-a)(b_k-b)=\sum_{k=1}^n a_kb_k-nab \]
が成り立つことを示せ.
(ii) 科目$\mathrm{X}$の得点と科目$\mathrm{Y}$の得点の相関係数$r_{\mathrm{XY}}$を$x$で表せ.
(iii) $x$の値を$2$増やして$r_{\mathrm{XY}}$を計算しても値は同じであった.このとき,$r_{\mathrm{XY}}$の値を四捨五入して小数第$1$位まで求めよ.
広島大学 国立 広島大学 2016年 第5問
$n$を$2$以上の自然数とする.次の問いに答えよ.

(1)変量$x$のデータの値が$x_1,\ x_2,\ \cdots,\ x_n$であるとし,
\[ f(a)=\frac{1}{n} \sum_{k=1}^n (x_k-a)^2 \]
とする.$f(a)$を最小にする$a$は$x_1,\ x_2,\ \cdots,\ x_n$の平均値で,そのときの最小値は$x_1,\ x_2,\ \cdots,\ x_n$の分散であることを示せ.
(2)$c$を定数として,変量$y,\ z$の$k$番目のデータの値が

$y_k=k\phantom{c} \quad (k=1,\ 2,\ \cdots,\ n)$
$z_k=ck \quad (k=1,\ 2,\ \cdots,\ n)$

であるとする.このとき$y_1,\ y_2,\ \cdots,\ y_n$の分散が$z_1,\ z_2,\ \cdots,\ z_n$の分散より大きくなるための$c$の必要十分条件を求めよ.
(3)変量$x$のデータの値が$x_1,\ x_2,\ \cdots,\ x_n$であるとし,その平均値を$\overline{x}$とする.新たにデータを得たとし,その値を$x_{n+1}$とする.$x_1,\ x_2,\ \cdots,\ x_n,\ x_{n+1}$の平均値を$x_{n+1},\ \overline{x}$および$n$を用いて表せ.
(4)次の$40$個のデータの平均値,分散,中央値を計算すると,それぞれ,ちょうど$40,\ 670,\ 35$であった.

\begin{tabular}{|rrrrrrrrrr|}
\hline
$120$ & $10$ & $60$ & $70$ & $30$ & $20$ & $20$ & $30$ & $20$ & $60$ \\
$40$ & $50$ & $40$ & $10$ & $30$ & $40$ & $40$ & $30$ & $20$ & $70$ \\
$100$ & $20$ & $20$ & $40$ & $40$ & $60$ & $70$ & $20$ & $50$ & $10$ \\
$30$ & $10$ & $50$ & $80$ & $10$ & $30$ & $70$ & $10$ & $60$ & $10$ \\ \hline
\end{tabular}


新たにデータを得たとし,その値が$40$であった.このとき,$41$個のすべてのデータの平均値,分散,中央値を求めよ.ただし,得られた値が整数でない場合は,小数第$1$位を四捨五入せよ.
茨城大学 国立 茨城大学 2016年 第4問
$\displaystyle \alpha=\frac{\sqrt{2}+\sqrt{2}i}{\sqrt{3}+i}$のとき,以下の各問に答えよ.ただし,$i$は虚数単位である.

(1)$\alpha$の絶対値を$r$,偏角を$\theta$とする.$r$と$\theta$の値をそれぞれ求めよ.ただし,偏角$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(2)$\alpha^{20}$を計算せよ.
(3)複素数平面上で複素数$z$の表す点$\mathrm{P}$を点$\mathrm{P}(z)$と表す.点$\mathrm{A}(\alpha^{20})$,$\mathrm{B}(\alpha^{36})$,$\mathrm{C}(\beta)$を頂点とする正三角形$\mathrm{ABC}$がある.このとき,複素数$\beta$をすべて求めよ.
高知大学 国立 高知大学 2016年 第2問
$0<k<1$,$0<l<1$とする.鋭角三角形$\mathrm{OAB}$の辺$\mathrm{OA}$を$k:(1-k)$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$l:(1-l)$に内分する点を$\mathrm{Q}$,$\mathrm{AQ}$と$\mathrm{BP}$の交点を$\mathrm{R}$とおく.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$をそれぞれ$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)$\mathrm{P}$,$\mathrm{Q}$が$\mathrm{BP} \perp \mathrm{OA}$かつ$\mathrm{AQ} \perp \mathrm{OB}$をみたすとき,$k,\ l$の値を$\overrightarrow{a}$,$\overrightarrow{b}$のそれぞれの長さ$|\overrightarrow{a|}$,$|\overrightarrow{b|}$および内積$\overrightarrow{a} \cdot \overrightarrow{b}$を用いて表せ.
(4)$k,\ l$が$(3)$の条件をみたすとき,点$\mathrm{R}$は$\mathrm{OR} \perp \mathrm{AB}$をみたすかどうかを内積を計算することによって述べよ.
福井大学 国立 福井大学 2016年 第3問
表の出る確率が$r$,裏の出る確率が$1-r$であるコインがある.このコインを繰り返し投げ,表の出た回数と裏の出た回数の差の絶対値が$2$になったときにコイン投げを終了する.ちょうど$2n$回で終了する確率を$p_n$とし,$2n$回以下で終了する確率を$q_n$とする.ただし,$n$は正の整数とする.このとき,以下の問いに答えよ.

(1)$p_n$を求めよ.
(2)$q_n$を求めよ.
(3)$\displaystyle r=\frac{1}{4}$のとき,$q_n \geqq 0.999$となる最小の$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
福井大学 国立 福井大学 2016年 第4問
表の出る確率が$r$,裏の出る確率が$1-r$であるコインがある.このコインを繰り返し投げ,表の出た回数と裏の出た回数の差の絶対値が$2$になったときにコイン投げを終了する.ちょうど$2n$回で終了する確率を$p_n$とし,$2n$回以下で終了する確率を$q_n$とする.ただし,$n$は正の整数とする.このとき,以下の問いに答えよ.

(1)$p_n$を求めよ.
(2)無限級数$\displaystyle \sum_{n=1}^\infty np_n$の和を求めよ.ただし,$0 \leqq s<1$に対して$\displaystyle \lim_{n \to \infty}ns^n=0$であることを用いてもよい.
(3)$\displaystyle r=\frac{1}{4}$のとき,$q_n \geqq 0.999$となる最小の$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
以下の条件で定められる数列$\{a_n\}$がある.
\[ a_1=\frac{1}{10},\quad a_{n+1}=\frac{1}{100}a_n+\frac{1}{10} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$\{a_n\}$の階差数列$\{b_n\}$を$b_n=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定める.$\{b_n\}$は等比数列で,初項を$\displaystyle \frac{1}{{10}^p}$,公比を$\displaystyle \frac{1}{{10}^q}$とおくと,$p=[$13$]$,$q=[$14$]$となる.ゆえに,$\{b_n\}$の第$n$項を
\[ b_n=\frac{1}{{10}^{rn+s}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおくと,$r=[$15$]$,$s=[$16$]$となる.さらに,$\{a_n\}$の第$n$項は,
\[ a_n=a_1+\sum_{k=[$17$]}^{n+[$18$][$19$]} b_k=\frac{\displaystyle\frac{1}{{10}^t} \left( 1-\frac{1}{{10}^{un}} \right)}{1-\displaystyle\frac{1}{{10}^v}} \quad (n=2,\ 3,\ 4,\ \cdots) \]
と求められる.ここで,$t=[$20$]$,$u=[$21$]$,$v=[$22$]$である.
(2)$\displaystyle S_n=\sum_{k=1}^n \frac{1}{{10}^{2k} a_k a_{k+1}} \quad (n=1,\ 2,\ 3,\ \cdots)$とおく.関係式
\[ \frac{b_k}{a_k a_{k+1}}=\frac{[$23$][$24$]}{a_k}+\frac{[$25$][$26$]}{a_{k+1}} \quad (k=1,\ 2,\ 3,\ \cdots) \]
を用いて計算すると,
\[ S_n=\frac{{10}^w \left( 1-\displaystyle\frac{1}{{10}^{xn}} \right)}{1-\displaystyle\frac{1}{{10}^{yn+z}}} \]
となる.ここで,$w=[$27$]$,$x=[$28$]$,$y=[$29$]$,$z=[$30$]$である.
(3)$({100}^{n+1}-1)S_n$は$[$31$]n+[$32$][$33$]$桁の整数になる.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,$4$つの正三角形を側面とする正四角錐$\mathrm{O}$-$\mathrm{ABCD}$がある.$\mathrm{OA}$と$\mathrm{OC}$を$4:1$に内分する点をそれぞれ$\mathrm{P}$と$\mathrm{R}$,正の実数$r$に対して$\mathrm{OB}$を$1:r$に内分する点を$\mathrm{Q}$とする.

(1)内積$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{QR}}$と$\overrightarrow{\mathrm{PR}} \cdot \overrightarrow{\mathrm{OQ}}$を計算せよ.答が$r$の有理式になる場合は,$1$つの既約分数式で解答せよ.
(2)線分$\mathrm{PR}$の中点を$\mathrm{M}$とする.$\mathrm{QM}$と$\mathrm{OD}$が平行になる$r$を求めよ.
(3)$\mathrm{QM}$と$\mathrm{OD}$が平行なとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面$\alpha$で正四角錐$\mathrm{O}$-$\mathrm{ABCD}$を$2$つの多面体に切り分ける.このとき,$\alpha$による切り口の図形の面積,および,切り分けたうち頂点$\mathrm{O}$を含む多面体の体積を求めよ.
スポンサーリンク

「計算」とは・・・

 まだこのタグの説明は執筆されていません。