タグ「角度」の検索結果

3ページ目:全901問中21問~30問を表示)
信州大学 国立 信州大学 2016年 第2問
平面上の点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$のなす角を$\displaystyle \beta \left( 0<\beta<\frac{\pi}{2} \right)$とする.さらに,
\[ \angle \mathrm{BOC}=\alpha+\beta,\quad |\overrightarrow{\mathrm{OB|}}=2 |\overrightarrow{\mathrm{OA|}}=4 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1 \]
であるとする.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$,$\triangle \mathrm{OBC}$の面積をそれぞれ$s,\ t,\ u$とする.このとき,以下の問いに答えよ.

(1)$s,\ t,\ u$を,それぞれ$\alpha,\ \beta$を用いて表せ.
(2)$2s=2t=u$であるとき,$\alpha$と$\beta$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2016年 第1問
空間内の平面$\alpha$上に平行四辺形$\mathrm{OABC}$があり,
\[ \mathrm{OA}=2,\quad \mathrm{OC}=3,\quad \angle \mathrm{AOC}=\frac{\pi}{3} \]
とする.点$\mathrm{C}$を通り$\alpha$に垂直な直線上に点$\mathrm{D}$があり,
\[ \mathrm{CD}=1 \]
とする.$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{D}$を通る平面を$\beta$とし,$\mathrm{C}$を通り$\beta$に垂直な直線と$\beta$との交点を$\mathrm{H}$とする.

(1)$\triangle \mathrm{OBD}$の面積を求めよ.
(2)線分$\mathrm{CH}$の長さを求めよ.
熊本大学 国立 熊本大学 2016年 第1問
$1$辺の長さ$1$の正四面体$\mathrm{OABC}$を考える.$\displaystyle 0<s<\frac{1}{2}$に対し$\mathrm{OA}$を$s:(1-s)$に内分する点を$\mathrm{P}$とし,$0<t<1$に対し$\mathrm{OC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\mathrm{OB}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{PB}}$,$\overrightarrow{\mathrm{PQ}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ s,\ t$を用いて表せ.
(2)$\angle \mathrm{BPQ}={90}^\circ$であるとき,$t$を$s$を用いて表せ.
(3)$(2)$の条件の下で,$t$の最大値とそのときの$s$の値を求めよ.
(4)$(3)$で求めた$s,\ t$に対して,$\mathrm{PQ}^2$を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
東京農工大学 国立 東京農工大学 2016年 第2問
$n$を自然数とし,$a,\ b,\ r$は実数で$b>0$,$r>0$とする.複素数$w=a+bi$は$w^2=-2 \overline{w}$を満たすとする.$\alpha_n=r^{n+1} w^{2-3n} (n=1,\ 2,\ 3,\ \cdots)$とする.ただし,$i$は虚数単位とし,複素数$z$に共役な複素数を$\overline{z}$で表す.次の問いに答えよ.

(1)$a$と$b$の値を求めよ.
(2)複素数平面上の$3$点$\mathrm{O}(0)$,$\mathrm{A}(\alpha_1)$,$\mathrm{B}(\overline{\alpha_1})$について,$\angle \mathrm{AOB}$の大きさを$\theta$とする.ただし,$0 \leqq \theta \leqq \pi$とする.$\theta$の値を求めよ.
(3)$\alpha_n$の実部を$c_n (n=1,\ 2,\ 3,\ \cdots)$とする.$c_n$を$n$と$r$を用いて表せ.
(4)$(3)$で求めた$c_n$を第$n$項とする数列$\{c_n\}$について,無限級数$\displaystyle \sum_{n=1}^\infty c_n$が収束し,その和が$\displaystyle \frac{8}{3}$となるような$r$の値を求めよ.
東京農工大学 国立 東京農工大学 2016年 第4問
$xy$平面上の$2$つの曲線

$C_1:y=\log x+2 \quad (x>0)$
$C_2:y=-\log x \quad (x>0)$

を考える.正の実数$p,\ q$について,点$\mathrm{P}(p,\ \log p+2)$における$C_1$の接線を$\ell_1$とし,点$\mathrm{Q}(q,\ -\log q)$における$C_2$の接線を$\ell_2$とする.また,$\ell_1$と$\ell_2$は垂直であるとする.ただし,対数は自然対数とする.次の問いに答えよ.

(1)$q$を$p$を用いて表せ.
(2)$\ell_2$の方程式を$p$を用いて表せ.
(3)$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.$\displaystyle \angle \mathrm{RPQ}=\frac{\pi}{3}$であるとき,線分$\mathrm{PQ}$,曲線$C_1$および曲線$C_2$で囲まれた部分の面積$S$を求めよ.
福島大学 国立 福島大学 2016年 第3問
次の問いに答えなさい.

(1)次の極限を求めなさい.
\[ \lim_{n \to \infty} (\sqrt{(n+1)(n+3)}-\sqrt{n(n+2)}) \]
(2)複素数平面上の$2$点$\alpha=4-2i,\ \beta=3-3i$に対して,次の問いに答えなさい.

(i) 点$\alpha$を点$\beta$の周りに${30}^\circ$回転した点を表す複素数$\gamma$を求めなさい.
(ii) $\beta^6$の値を求めなさい.

(3)三角形$\mathrm{ABC}$があり$\mathrm{AB}=5$,$\mathrm{AC}=3$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{1}{3}$とする.点$\mathrm{A}$から辺$\mathrm{BC}$へ下ろした垂線と辺$\mathrm{BC}$の交点を$\mathrm{H}$とする.

(i) ベクトル$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表しなさい.
(ii) 線分$\mathrm{AH}$の長さを求めなさい.
宮崎大学 国立 宮崎大学 2016年 第1問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={90}^\circ$,$\mathrm{AB}:\mathrm{AC}=5:4$とする.辺$\mathrm{BC}$の点$\mathrm{C}$側の延長上に,$\mathrm{CA}=\mathrm{CD}$となる点$\mathrm{D}$をとる.辺$\mathrm{AB}$の中点を$\mathrm{E}$とし,点$\mathrm{B}$から直線$\mathrm{AD}$に下した垂線を$\mathrm{BF}$とするとき,次の各問に答えよ.

(1)$\mathrm{EF}=\mathrm{EC}$を示せ.
(2)面積比$\triangle \mathrm{ABC}:\triangle \mathrm{CEF}$を求めよ.
宮崎大学 国立 宮崎大学 2016年 第2問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={90}^\circ$,$\mathrm{AB}:\mathrm{AC}=5:4$とする.辺$\mathrm{BC}$の点$\mathrm{C}$側の延長上に,$\mathrm{CA}=\mathrm{CD}$となる点$\mathrm{D}$をとる.辺$\mathrm{AB}$の中点を$\mathrm{E}$とし,点$\mathrm{B}$から直線$\mathrm{AD}$に下した垂線を$\mathrm{BF}$とするとき,次の各問に答えよ.

(1)$\mathrm{EF}=\mathrm{EC}$を示せ.
(2)面積比$\triangle \mathrm{ABC}:\triangle \mathrm{CEF}$を求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第1問
次の各問いに答えよ.

(1)$\triangle \mathrm{ABC}$において$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\mathrm{AB}=6$,$\mathrm{BC}=5$,$\mathrm{BD}=3$のとき,辺$\mathrm{AC}$の長さを求めよ.
(2)自然数$n$が$6$と互いに素であるとき,$n^2-1$が$6$で割り切れることを示せ.
(3)$xy$平面で次の不等式で表される領域を図示せよ.
\[ |x| \leqq y \leqq 1-|x| \]
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。