タグ「角度」の検索結果

2ページ目:全901問中11問~20問を表示)
埼玉大学 国立 埼玉大学 2016年 第4問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,頂点$\mathrm{O}$から$\triangle \mathrm{ABC}$を含む平面に下ろした垂線の足を$\mathrm{H}$とする.また,四面体$\mathrm{OABC}$は
\[ |\overrightarrow{a|}=|\overrightarrow{b|}=|\overrightarrow{c|}=1,\quad \angle \mathrm{AOB}=\angle \mathrm{BOC}=\frac{\pi}{3} \]
を満たすものとし,$\angle \mathrm{AOC}=\theta \left( 0<\theta<\displaystyle\frac{2}{3} \pi \right)$とする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$を満たす$s,\ t,\ u$を求めよ.
(4)$|\overrightarrow{\mathrm{OH|}}$を求めよ.
(5)$\displaystyle 0<\theta<\frac{2}{3}\pi$のとき,四面体$\mathrm{OABC}$の体積の最大値を求めよ.
岐阜大学 国立 岐阜大学 2016年 第5問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$の中点を$\mathrm{E}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.以下の問に答えよ.

(1)$\overrightarrow{\mathrm{CE}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)直線$\mathrm{CE}$と辺$\mathrm{AB}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{CF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)辺$\mathrm{AB}$を$7:1$に外分する点を$\mathrm{G}$とする.$\overrightarrow{\mathrm{EG}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(4)内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{EG}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(5)$\triangle \mathrm{OAB}$を$\mathrm{OA}=\mathrm{OB}$となる直角二等辺三角形とするとき,$\angle \mathrm{CEG}$の大きさを求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第1問
平面上で,半径$r_1$の円$C_1$と半径$r_2$の円$C_2$が,異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとする.線分$\mathrm{PQ}$の垂直二等分線を$\ell$として,円$C_1$と$\ell$の交点のうち円$C_2$の内部にある点を$\mathrm{R}$,円$C_2$と$\ell$の交点のうち円$C_1$の外部にある点を$\mathrm{S}$とする.

(1)$\displaystyle \angle \mathrm{PRQ}=\frac{\pi}{2},\ \angle \mathrm{PSQ}=\frac{\pi}{6}$のとき,$\displaystyle \frac{r_2}{r_1}$を求めよ.

(2)$\displaystyle \angle \mathrm{PRQ}=\frac{\pi}{3},\ \angle \mathrm{PSQ}=\frac{\pi}{4}$のとき,$\displaystyle \frac{r_2}{r_1}$を求めよ.

(3)$\displaystyle \angle \mathrm{PRQ}=\theta_1,\ \angle \mathrm{PSQ}=\theta_2$とするとき,$\displaystyle \frac{r_2}{r_1}$を$\theta_1$と$\theta_2$を用いて表せ.
群馬大学 国立 群馬大学 2016年 第3問
複素数平面の点$\mathrm{A}(1)$を中心とし,原点を通る円を$C$とする.また,$\mathrm{P}(z)$,$\mathrm{Q}(w)$を円$C$上を動く点とし,$\displaystyle 0<\arg{z}<\arg{w}<\frac{\pi}{2}$とする.さらに,$\displaystyle R=\frac{z(w-2)}{w(z-2)}$とおく.

(1)$R$は$R>1$を満たす実数であることを示せ.
(2)$\displaystyle \angle \mathrm{PAQ}=\frac{\pi}{3}$のときの$R$の最小値を求めよ.
香川大学 国立 香川大学 2016年 第3問
平面上の三角形$\mathrm{ABC}$は,$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\angle \mathrm{BAC}={60}^\circ$を満たしているとする.また,平面上の動点$\mathrm{P}$に対し実数$f(\mathrm{P})$を
\[ f(\mathrm{P})=\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{CP}}+\overrightarrow{\mathrm{CP}} \cdot \overrightarrow{\mathrm{AP}} \]
で定める.このとき,次の問に答えよ.

(1)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とするとき,$f(\mathrm{G})$の値を求めよ.
(2)$\displaystyle f(\mathrm{P})=\frac{8}{3}$となる点$\mathrm{P}$の全体は円になることを示せ.
(3)点$\mathrm{P}$が平面全体を動くとき,$f(\mathrm{P})$のとりうる値の範囲を求めよ.
九州工業大学 国立 九州工業大学 2016年 第3問
複素数$z_n$を
\[ z_0=0,\quad z_1=1,\quad z_{n+2}=z_{n+1}+\alpha (z_{n+1}-z_n) \quad (n=0,\ 1,\ 2,\ \cdots) \]
により定める.ただし,$i$を虚数単位とし,$\displaystyle \alpha=\frac{1}{2} \left( \cos \frac{\pi}{3}+i \sin \frac{\pi}{3} \right)$とする.また,複素数平面上で複素数$z_n$を表す点を$\mathrm{P}_n$とする.以下の問いに答えよ.

(1)$z_2,\ z_3,\ z_4$を求めよ.
(2)点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$を図示せよ.また,線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\mathrm{P}_2 \mathrm{P}_3$,$\mathrm{P}_3 \mathrm{P}_4$の長さ,および$\angle \mathrm{P}_2 \mathrm{P}_1 \mathrm{P}_0$,$\angle \mathrm{P}_3 \mathrm{P}_2 \mathrm{P}_1$,$\angle \mathrm{P}_4 \mathrm{P}_3 \mathrm{P}_2$の値も図中に示せ.
(3)$z_{n+1}-z_n (n=1,\ 2,\ 3,\ \cdots)$を$\alpha$と$n$を用いて表せ.
(4)$z_n$の実部,虚部をそれぞれ$x_n,\ y_n$とする.このとき,$x_n,\ y_n$をそれぞれ$n$を用いて表せ.
(5)$(4)$で求めた$x_n,\ y_n$について,$\displaystyle \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n$をそれぞれ求めよ.
埼玉大学 国立 埼玉大学 2016年 第4問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,頂点$\mathrm{O}$から$\triangle \mathrm{ABC}$を含む平面に下ろした垂線の足を$\mathrm{H}$とする.また,四面体$\mathrm{OABC}$は
\[ |\overrightarrow{a|}=|\overrightarrow{b|}=|\overrightarrow{c|}=1,\quad \angle \mathrm{AOB}=\angle \mathrm{BOC}=\frac{\pi}{3} \]
を満たすものとし,$\angle \mathrm{AOC}=\theta \left( 0<\theta<\displaystyle\frac{2}{3} \pi \right)$とする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$を満たす$s,\ t,\ u$を求めよ.
(4)$|\overrightarrow{\mathrm{OH|}}$を求めよ.
(5)$\displaystyle 0<\theta<\frac{2}{3}\pi$のとき,四面体$\mathrm{OABC}$の体積の最大値を求めよ.
筑波大学 国立 筑波大学 2016年 第5問
$\triangle \mathrm{PQR}$において$\angle \mathrm{RPQ}=\theta$,$\displaystyle \angle \mathrm{PQR}=\frac{\pi}{2}$とする.点$\mathrm{P}_n (n=1,\ 2,\ 3,\ \cdots)$を次で定める.
\[ \mathrm{P}_1=\mathrm{P},\quad \mathrm{P}_2=\mathrm{Q},\quad \mathrm{P}_n \mathrm{P}_{n+2}=\mathrm{P}_n \mathrm{P}_{n+1} \]
ただし,点$\mathrm{P}_{n+2}$は線分$\mathrm{P}_n \mathrm{R}$上にあるものとする.実数$\theta_n (n=1,\ 2,\ 3,\ \cdots)$を
\[ \theta_n=\angle \mathrm{P}_{n+1} \mathrm{P}_n \mathrm{P}_{n+2} \quad (0<\theta_n<\pi) \]
で定める.

(1)$\theta_2,\ \theta_3$を$\theta$を用いて表せ.
(2)$\displaystyle \theta_{n+1}+\frac{\theta_n}{2} (n=1,\ 2,\ 3,\ \cdots)$は$n$によらない定数であることを示せ.
(3)$\displaystyle \lim_{n \to \infty} \theta_n$を求めよ.
(図は省略)
信州大学 国立 信州大学 2016年 第3問
平面上の点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$のなす角を$\displaystyle \beta \left( 0<\beta<\frac{\pi}{2} \right)$とする.さらに,
\[ \angle \mathrm{BOC}=\alpha+\beta,\quad |\overrightarrow{\mathrm{OB|}}=2 |\overrightarrow{\mathrm{OA|}}=4 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1 \]
であるとする.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$,$\triangle \mathrm{OBC}$の面積をそれぞれ$s,\ t,\ u$とする.このとき,以下の問いに答えよ.

(1)$s,\ t,\ u$を,それぞれ$\alpha,\ \beta$を用いて表せ.
(2)$2s=2t=u$であるとき,$\alpha$と$\beta$を求めよ.
信州大学 国立 信州大学 2016年 第2問
平面上の点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$のなす角を$\displaystyle \beta \left( 0<\beta<\frac{\pi}{2} \right)$とする.さらに,
\[ \angle \mathrm{BOC}=\alpha+\beta,\quad |\overrightarrow{\mathrm{OB|}}=2 |\overrightarrow{\mathrm{OA|}}=4 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1 \]
であるとする.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$,$\triangle \mathrm{OBC}$の面積をそれぞれ$s,\ t,\ u$とする.このとき,以下の問いに答えよ.

(1)$s,\ t,\ u$を,それぞれ$\alpha,\ \beta$を用いて表せ.
(2)$2s=2t=u$であるとき,$\alpha$と$\beta$を求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。