タグ「複素数」の検索結果

6ページ目:全105問中51問~60問を表示)
自治医科大学 私立 自治医科大学 2016年 第10問
点$z$は複素数とする.点$z$は,原点$\mathrm{O}$を中心とする半径$1$の円上を動く.$\displaystyle w=\frac{6z-1}{2z-1}$としたとき,$|w|$の最大値を$M$,最小値を$m$とする.$3(M-m)$の値を求めよ.
獨協医科大学 私立 獨協医科大学 2016年 第4問
次の問いに答えなさい.ただし,$[チ]$には$[$\mathrm{X]$}$~$[$\mathrm{Z]$}$に入る言葉の組合せとして最も適切なものを,下の選択肢$\nagamaruichi$~$\nagamaruroku$のうちから一つ選びなさい.

複素数$\alpha$を$\alpha=-7+4 \sqrt{3}i$とし,実数の数列$\{a_n\}$と$\{b_n\}$を
\[ a_n+4 \sqrt{3} b_n i=\alpha^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$i$は虚数単位である.$a_n$と$b_n$を$\alpha$とその共役な複素数$\overline{\alpha}$で表すと
\[ a_n=\frac{\alpha^n+(\overline{\alpha})^n}{[ア]},\quad b_n=\frac{\alpha^n-(\overline{\alpha})^n}{[イ] \sqrt{[ウ]}i} \]
となるので,数列$\{a_n\}$と$\{b_n\}$は漸化式

$a_{n+2}+[エオ]a_{n+1}+[カキ]a_n=0 \quad \cdots\cdots \ ①$
$b_{n+2}+[エオ]b_{n+1}+[カキ]b_n=0 \quad\;\;\!\! \cdots\cdots \ ②$

を満たす.これらを用いて,すべての自然数$n$に対して

$a_n$と$b_n$が互いに素な整数である $\quad \cdots\cdots \ (*)$

ことを,数学的帰納法により証明する.

(i) $n=1,\ 2$のとき
\[ a_1=[クケ],\quad b_1=[コ],\quad a_2=[サ],\quad b_2=[シスセ] \]
であるから,$(*)$が成り立つ.
(ii) $n=k,\ k+1$のとき$(*)$が成り立つと仮定する.
まず$①,\ ②$より,$a_{k+2},\ b_{k+2}$は$[$\mathrm{X]$}$である.ここで
\[ {a_n}^2+48{b_n}^2=[ソタ]^n \quad \cdots\cdots \ ③ \]
がすべての自然数$n$で成り立つ.$[ソタ]$が$[$\mathrm{Y]$}$であるから,$a_{k+2},\ b_{k+2}$が$[$\mathrm{Z]$}$と仮定すると$③$より,これら$2$数は$[ソタ]$の倍数でなければならない.ところが,このとき$①,\ ②$より$a_{k+1},\ b_{k+1}$は$[ソタ]$の倍数となり,数学的帰納法の仮定と矛盾する.よって,$n=k+2$のときも$(*)$が成り立つ.

$(ⅰ),\ (ⅱ)$より,すべての自然数$n$について$(*)$が成り立つ.

$[チ]$の選択肢
\[ \begin{array}{ccccccccc}
& \mathrm{X} & \mathrm{Y} & \mathrm{Z} & & & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\nagamaruichi & \text{整数} & \text{素数} & \text{互いに素でない} & & \nagamaruni & \text{整数} & \text{素数} & \text{互いに素である} \\
\nagamarusan & \text{素数} & \text{素数} & \text{互いに素でない} & & \nagamarushi & \text{整数} & \text{整数} & \text{互いに素である} \\
\nagamarugo & \text{素数} & \text{整数} & \text{互いに素でない} & & \nagamaruroku & \text{素数} & \text{整数} & \text{互いに素である}
\end{array} \]
東京女子大学 私立 東京女子大学 2016年 第7問
複素数$z$についての方程式$z^4+8z^2+64=0$を解け.
愛知学院大学 私立 愛知学院大学 2016年 第2問
次の式を複素数の範囲で因数分解しなさい.

(1)$x^4-1 \qquad\qquad (2) x^4+4x^2+16$
神奈川大学 私立 神奈川大学 2016年 第1問
次の空欄を適当に補え.

(1)方程式$x^2+y=63$を満たす自然数の組$(x,\ y)$は$[ ]$組ある.
(2)ベクトル$\overrightarrow{a}=(1,\ 2)$,$\overrightarrow{b}=(-2,\ 3)$,$\overrightarrow{c}=(2,\ -1)$がある.$\overrightarrow{a}+t \overrightarrow{b}$が$\overrightarrow{c}$と平行となるのは$t=[ ]$のときである.
(3)$0 \leqq x<2\pi$とする.不等式$\sqrt{3} \sin x+\cos x>\sqrt{3}$を解くと,$x$の値の範囲は$[ ]$である.
(4)$S=1+2r^2+3r^4+4r^6+\cdots +10r^{18}$とする.$r=\sqrt{2}$のとき,$S$の値を求めると$[ ]$である.
(5)赤,青,黄のカードが$2$枚ずつある.この$6$枚のカードを$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人に$2$枚ずつ配るとき,どの人の$2$枚についてもその色が異なる確率は$[ ]$である.
(6)複素数平面で,方程式
\[ z \overline{z}-iz+i \overline{z}-9=0 \]
で定まる円の中心を表す複素数は$[ ]$であり,半径は$[ ]$である.ただし,$i$は虚数単位である.
藤田保健衛生大学 私立 藤田保健衛生大学 2016年 第1問
次の問いに答えよ.

(1)全体集合$U$の要素の個数が$50$,$U$の部分集合$A,\ B,\ C$の要素の個数がそれぞれ$33$,$36$,$37$である.$A \cap B \cap C$の要素の個数の最小値を求めよ.
(2)$70$より大きい$2$桁の素数の値すべてからなる$1$組のデータがある.ただし,同じ値は重複していない.このデータの標準偏差を求めよ.
(3)$(0.9)^n<0.01$を満たす最小の整数$n$を求めよ.ただし小数第$5$位を四捨五入したとき$\log_{10}3=0.4771$である.
(4)極方程式$r=2(\cos \theta+\sin \theta)$の表す曲線を直交座標$(x,\ y)$に関する方程式で表す.$x=1$に対する$y$をすべて求めよ.
(5)複素数平面上に点$\mathrm{A}$を直角の頂点とする直角二等辺三角形$\mathrm{ABC}$がある.$\mathrm{A}(2+i)$,$\mathrm{B}(4+4i)$のとき点$\mathrm{C}$を表す複素数を求めよ.
(6)$\displaystyle \lim_{x \to \infty} (\sqrt{3x^2+2x+1}+ax+b)=0$が成り立つように定数$a,\ b$の値を定めよ.
(7)$x>0$で定義される関数$\displaystyle f(x)=\frac{\log 2x}{x^2}$の最大値を求めよ.
(8)曲線$x=3(t-\sin t)$,$y=3(1-\cos t)$の$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の部分の長さを求めよ.
近畿大学 私立 近畿大学 2016年 第3問
$i$を虚数単位とする.異なる$3$つの複素数$\alpha,\ \beta,\ \gamma$の間に等式$\gamma-i \beta=(1-i) \alpha$が成り立つものとする.さらに,$\alpha$は方程式$|\alpha-2|=|\alpha-2 \sqrt{3|i}$を満たすとする.複素数平面において$3$点$\mathrm{A}(\alpha)$,$\mathrm{B}(\beta)$,$\mathrm{C}(\gamma)$を頂点とする$\triangle \mathrm{ABC}$を考える.

(1)$\angle \mathrm{BAC}={[アイ]}^\circ$,$\angle \mathrm{ABC}={[ウエ]}^\circ$,$\angle \mathrm{ACB}={[オカ]}^\circ$である.

(2)点$\mathrm{A}$が虚軸上にあるとき,$\displaystyle \alpha=\frac{[キ] \sqrt{[ク]}}{[ケ]}i$である.さらに点$\mathrm{B}$が実軸上にあるとすると,点$\mathrm{C}$は方程式
\[ |\gamma|=|\gamma-\delta| \quad \text{(ただし$\delta$は$0$と異なる定数)} \]
を満たす.このとき$\displaystyle \delta=\frac{[コ] \sqrt{[サ]}}{[シ]}$である.

(3)点$\mathrm{B}$および点$\mathrm{C}$がそれぞれ,実軸上,虚軸上にあるとき
\[ \alpha=[ス]-\sqrt{[セ]}+\left( [ソタ]+\sqrt{[チ]} \right) i \]
である.さらに,$\gamma$が方程式$|\gamma-2|=|\gamma-2 \sqrt{3|i}$を満たすとき
\[ \beta=\frac{[ツ]-[テ] \sqrt{[ト]}}{[ナ]} \]
である.
広島市立大学 公立 広島市立大学 2016年 第2問
次の問いに答えよ.

(1)複素数平面において,$\alpha=3+i$,$\beta=5-3i$とする.点$\beta$を,点$\alpha$を中心として$\displaystyle \frac{2}{3} \pi$だけ回転した点を表す複素数$\gamma$を求めよ.
(2)点$(0,\ 1)$から曲線$3x^2-2y^2=-6$に引いた接線の方程式を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2016年 第7問
$a$を$1$以上の実数,$b$を実数,$i$を虚数単位とし,複素数$z$を$z=a+bi$とする.また,複素数$w$を$\displaystyle w=\frac{1}{z}$とする.以下の問いに答えよ.

(1)複素数$z$が存在する領域を複素数平面上に図示せよ.また,$iz$が存在する領域を複素数平面上に図示せよ.
(2)$x,\ y$を実数とし,$w=x+yi$とおくとき,$a$を$x$および$y$を用いて表せ.
(3)$w$が存在する領域を複素数平面上に図示せよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2016年 第4問
次の問いに答えよ.

(1)異なる複素数$\alpha,\ \beta$に対して,$\displaystyle \frac{z-\alpha}{z-\beta}$が純虚数となるような$z$は,複素数平面上でどのような図形を描くか.
(2)$2$次方程式$x^2-2x+4=0$の解を$\alpha,\ \beta$とする.ただし,$\alpha$の虚部は正であるとする.等式
\[ \arg{\displaystyle\frac{z-\alpha^2}{z-\beta^2}}=\frac{\pi}{2} \]
をみたす$z$が,複素数平面上で描く図形を図示せよ.
スポンサーリンク

「複素数」とは・・・

 まだこのタグの説明は執筆されていません。