タグ「行列」の検索結果

33ページ目:全327問中321問~330問を表示)
滋賀県立大学 公立 滋賀県立大学 2010年 第1問
実数$a,\ b,\ c,\ d$を成分とする行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換によって,点$\mathrm{P}(1,\ 0)$は点$\mathrm{Q}(0,\ -2)$に移され,$\mathrm{Q}$は点$\mathrm{R}(1,\ 1)$に移されるとする.また,行列$B=k \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とおくとき,$B^2$の表す$1$次変換によって$\mathrm{P}$は$\mathrm{Q}$に移されるとする.ただし,$k$は正の実数とし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.

(1)$A$を求めよ.
(2)$\theta,\ k$を求めよ.
(3)$AB^3$の表す$1$次変換による点$(0,\ 1)$の像を求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第3問
単位行列$E$の実数倍ではない行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$を考える.$A$で表わされる$xy$平面上の移動を$f$とする.

(1)$A^2=kE$を満たす実数$k$が存在するための必要十分条件は,$a+d=0$であることを示せ.
(2)$a+d=0$のとき,原点Oとは異なる点Pで,$f(P)$が直線OP上にあるものが存在すれば,$a^2+bc \geqq 0$であることを示せ.
(3)$a+d=0$かつ$a^2+bc \geqq 0$であるとする.このとき$\lambda=\sqrt{a^2+bc}$とおけば,$(A-\lambda E)(A+\lambda E)=O$が成り立つことを示せ.ただし,$O$は零行列とする.
(4)(3)の仮定のもとで,$\lambda=\sqrt{a^2+bc}$とおく.原点Oとは異なる点Pで,$\text{Q}=f(P)$とすれば,$\overrightarrow{\mathrm{OQ}}=\lambda \overrightarrow{\mathrm{OP}}$となるものが存在することを示せ.
大阪府立大学 公立 大阪府立大学 2010年 第1問
次の問いに答えよ.

(1)次の関係式を満たす数列$\{a_n\}$の一般項をそれぞれ求めよ.

\mon[(i)] $\displaystyle a_1=\frac{1}{4}, a_{n+1}=\frac{a_n}{3a_n+1} \quad (n=1,\ 2,\ 3,\ \cdots)$
\mon[(ii)] $a_1=1, a_{n+1}=2a_n+3^n \quad (n=1,\ 2,\ 3,\ \cdots)$

(2)行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$が
\[ A^2-97A+2010E=O \]
を満たすとき,$a+d,\ ad-bc$の値の組をすべて求めよ.ただし,$E=\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ O=\biggl( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \biggr)$とする.
(3)$a$を正の実数とするとき,極限値
\[ b=\lim_{n \to \infty} \frac{(n+1)^a+(n+2)^a+\cdots +(n+n)^a}{1^a+2^a+\cdots +n^a} \]
を求めよ.
高知工科大学 公立 高知工科大学 2010年 第4問
$r$と$\theta$を$-1<r<1,\ 0 \leqq \theta < 2\pi$を満たす定数とする.行列$A=r \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$に対して,次の各問に答えよ.

(1)行列$E-A$は逆行列を持つことを証明し,$(E-A)^{-1}$を求めよ.
(2)全ての自然数$n$について
\[ A^n=r^n \left( \begin{array}{rr}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array} \right) \]
が成立することを数学的帰納法を用いて証明せよ.
(3)$n$を2以上の自然数とする.$(E+A+\cdots +A^{n-1})(E-A)$を簡単な式にせよ.
(4)次の極限値を求めよ.
\[ ① \quad \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \cos k\theta ② \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \sin k\theta \]
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第7問
行列
$A=\left( \begin{array}{cc}
1 & -1 \\
a & 0
\end{array} \right)$について,以下の問いに答えよ.ただし,$a>0$とする.

(1)$A$の逆行列を求めよ.
(2)$A$の表す1次変換によって,双曲線$\displaystyle y=\frac{1}{x-1}$上のある点が,点$(-1,\ 1)$に移されるとする.このとき,$a$の値を求めよ.
会津大学 公立 会津大学 2010年 第2問
2次の正方行列$A=\left( \begin{array}{cc}
a & 3b \\
0 & b
\end{array} \right)$,$B=\left( \begin{array}{cc}
a & b \\
0 & b
\end{array} \right)$に対して以下の問いに答えよ.ただし,$n$を自然数とし,$a \neq 0,\ b \neq 0$とする.

(1)$AB^{-1}$を求めよ.
(2)$(AB^{-1})^n$を求めよ.
(3)$P(AB^{-1})^n=\left( \begin{array}{cc}
8 & 3 \\
1 & 2
\end{array} \right)$が成り立つとき,行列$P$を求めよ.
横浜市立大学 公立 横浜市立大学 2010年 第3問
$n$は自然数とする.$1$以上の実数$a,\ d$と正の実数$b,\ c$を成分とする行列
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \]
に対し,$n$個の積$A^n$を
\[ A^n=\left( \begin{array}{cc}
a_n & b_n \\
c_n & d_n
\end{array} \right),\quad A^1=A \]
とおく.また,$0<v \leqq u$をみたす実数$u,\ v$と正の実数$\lambda$に対して,$A$は等式
\[ A \left( \begin{array}{c}
u \\
v
\end{array} \right)=\lambda \left( \begin{array}{c}
u \\
v
\end{array} \right) \]
をみたすとする.以下の問いに答えよ.

(1)不等式
\[ \left( 1+\frac{v}{u} \right) \lambda^n \leqq a_n+b_n+c_n+d_n \leqq \left( 1+\frac{u}{v} \right) \lambda^n \]
を示せ.
(2)$M$を$\displaystyle 1+\frac{1}{b}$と$\displaystyle 1+\frac{1}{c}$の大きい方($b=c$の場合はどちらでも良い)とするとき,不等式
\[ a_n+b_n+c_n+d_n<M(a_{n+1}+d_{n+1}) \]
を示せ.
(3)数列
\[ \left\{ \frac{1}{n} \log (a_n+d_n) \right\} \]
の極限値を求めよ.
スポンサーリンク

「行列」とは・・・

 まだこのタグの説明は執筆されていません。